4,562 research outputs found

    EarthN: A new Earth System Nitrogen Model

    Get PDF
    The amount of nitrogen in the atmosphere, oceans, crust, and mantle have important ramifications for Earth's biologic and geologic history. Despite this importance, the history and cycling of nitrogen in the Earth system is poorly constrained over time. For example, various models and proxies contrastingly support atmospheric mass stasis, net outgassing, or net ingassing over time. In addition, the amount available to and processing of nitrogen by organisms is intricately linked with and provides feedbacks on oxygen and nutrient cycles. To investigate the Earth system nitrogen cycle over geologic history, we have constructed a new nitrogen cycle model: EarthN. This model is driven by mantle cooling, links biologic nitrogen cycling to phosphate and oxygen, and incorporates geologic and biologic fluxes. Model output is consistent with large (2-4x) changes in atmospheric mass over time, typically indicating atmospheric drawdown and nitrogen sequestration into the mantle and continental crust. Critical controls on nitrogen distribution include mantle cooling history, weathering, and the total Bulk Silicate Earth+atmosphere nitrogen budget. Linking the nitrogen cycle to phosphorous and oxygen levels, instead of carbon as has been previously done, provides new and more dynamic insight into the history of nitrogen on the planet.Comment: 36 pages, 12 figure

    Expression of neurogenin3 reveals an islet cell precursor population in the pancreas

    Get PDF
    Differentiation of early gut endoderm cells into the endocrine cells forming the pancreatic islets of Langerhans depends on a cascade of gene activation events controlled by transcription factors including the basic helix-loop-helix (bHLH) proteins. To delineate this cascade, we began by establishing the position of neurogenin3, a bHLH factor found in the pancreas during fetal development. We detect neurogenin3 immunoreactivity transiently in scattered ductal cells in the fetal mouse pancreas, peaking at embryonic day 15.5. Although not detected in cells expressing islet hormones or the islet transcription factors Isl1, Brn4, Pax6 or PDX1, neurogenin3 is detected along with early islet differentiation factors Nkx6.1 and Nkx2.2, establishing that it is expressed in immature cells in the islet lineage. Analysis of transcription factor-deficient mice demonstrates that neurogenin3 expression is not dependent on neuroD1/BETA2, Mash1, Nkx2.2, Nkx6.1, or Pax6. Furthermore, early expression of neurogenin3 under control of the Pdx1 promoter is alone sufficient to drive early and ectopic differentiation of islet cells, a capability shared by the pancreatic bHLH factor, neuroD1/BETA2, but not by the muscle bHLH factor, MyoD. However, the islet cells produced in these transgenic experiments are overwhelmingly Ī± cells, suggesting that factors other than the bHLH factors are required to deviate from a default Ī± cell fate. These data support a model in which neurogenin3 acts upstream of other islet differentiation factors, initiating the differentiation of endocrine cells, but switching off prior to final differentiation. The ability to uniquely identify islet cell precursors by neurogenin3 expression allows us to determine the position of other islet transcription factors in the differentiation cascade and to propose a map for the islet cell differentiation pathway

    Inflight aircraft vibration modes and their effect on aircraft radar cross section

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76149/1/AIAA-44704-188.pd

    Radio-frequency dressed lattices for ultracold alkali atoms

    Get PDF
    Ultracold atomic gases in periodic potentials are powerful platforms for exploring quantum physics in regimes dominated by many-body effects as well as for developing applications that benefit from quantum mechanical effects. Further advances face a range of challenges including the realization of potentials with lattice constants smaller than optical wavelengths as well as creating schemes for effective addressing and manipulation of single sites. In this paper we propose a dressed-based scheme for creating periodic potential landscapes for ultracold alkali atoms with the capability of overcoming such difficulties. The dressed approach has the advantage of operating in a low-frequency regime where decoherence and heating effects due to spontaneous emission do not take place. These results highlight the possibilities of atom-chip technology in the future development of quantum simulations and quantum technologies, and provide a realistic scheme for starting such an exploration

    Dietary supplementation with Bifidobacterium longum subsp. infantis (B. infantis) in healthy breastfed infants: study protocol for a randomised controlled trial.

    Get PDF
    BackgroundThe development of probiotics as therapies to cure or prevent disease lags far behind that of other investigational medications. Rigorously designed phase I clinical trials are nearly non-existent in the field of probiotic research, which is a contributing factor to this disparity. As a consequence, how to appropriately dose probiotics to study their efficacy is unknown. Herein we propose a novel phase I ascending dose trial of Bifidobacterium longum subsp. infantis (B. infantis) to identify the dose required to produce predominant gut colonisation in healthy breastfed infants at 6 weeks of age.Methods/designThis is a parallel-group, placebo-controlled, randomised, double-blind ascending dose phase I clinical trial of dietary supplementation with B. infantis in healthy breastfed infants. The objective is to determine the pharmacologically effective dose (ED) of B. infantis required to produce predominant (>50 %) gut colonisation in breastfed infants at 6 weeks of age. Successively enrolled infant groups will be randomised to receive two doses of either B. infantis or placebo on days 7 and 14 of life. Stool samples will be used to characterise the gut microbiota at increasing doses of B. infantis.DiscussionProbiotic supplementation has shown promising results for the treatment of a variety of ailments, but evidence-based dosing regimes are currently lacking. The ultimate goal of this trial is to establish a recommended starting dose of B. infantis for further efficacy-testing phase II trials designed to evaluate B. infantis for the prevention of atopic dermatitis and food allergies in at-risk children.Trial registrationClinicaltrials.gov # NCT02286999 , date of trial registration 23 October 2014

    Comparison of a SiO2-CaO-ZnO-SrO Glass Polyalkenoate Cement to Commercial Dental Materials: Ion Release, Biocompatibility and Antibacterial Properties

    Get PDF
    Ion Release and biocompatibility of a CaO-SrO-ZnO-SiO2 (BT 101) based glass polyalkenoate cement (GPC) was compared against commercial GPCs, Fuji IX and Ketac Molar. The radiopacity (R) was similar for each material, 2.0-2.8. Ion release was evaluated on each material over 1, 7, 30 and 90 days. BT 101 release included Ca (23 mg/L), Sr (23 mg/L) Zn (13 mg/L), Si (203 mg/L). Fuji IX release includes Ca (0.7 mg/L), Al (3 mg/L) Si (26 mg/L), Na (60 mg/L) and P (0.5 mg/L) while Ketac Molar release includes Ca (1 mg/L), Al (0.6 mg/L) Si (23 mg/L), Na (76 mg/L) and P (0.7 mg/L). Simulated body fluid trials revealed CaP surface precipitation on BT 101. No evidence of precipitation was found on Fuji IX or Ketac Molar. Cytotoxicity testing found similar cell viability values for each material (~60 %, P = 1.000). Antibacterial testing determined a reduced CFU count with BT 101 (2.5 x 103) when compared to the control bacteria (2.4 x 104), Fuji IX (1.5 x 104) and Ketac Molar (1.2 x 104). Ā© 2013 Springer Science+Business Media New York
    • ā€¦
    corecore