444 research outputs found

    Interface-Induced Plasmon Nonhomogeneity in Nanostructured Metal-Dielectric Planar Metamaterial

    Get PDF
    Transformations of the electronic structure in thin silver layers in metal-dielectric (TiAlN/Ag) multilayer nanocomposite were investigated by a set of electron spectroscopy techniques. Localization of the electronic states in the valence band and reduction of electron concentration in the conduction band was observed. This led to decreasing metallic properties of silver in the thin films. A critical layer thickness of 23.5 nm associated with the development of quantum effects was determined by X-ray photoelectron spectroscopy. Scanning Auger electron microscopy of characteristic energy losses provided images of plasmon localization in the Ag layers. The nonuniformity of plasmon intensities distribution near the metal-nitride interfaces was assessed experimentally

    Control over multi-scale self-organization-based processes under the extreme tribological conditions of cutting through the application of complex adaptive surface-engineered systems

    Get PDF
    This paper features a comprehensive analysis of various multiscale selforganization processes that occur during cutting. A thorough study of entropy production during friction has uncovered several channels of its reduction that can be achieved by various selforganization processes. These processes are (1) self-organization during physical vapor deposition PVD coating deposition on the cutting tool substrates; (2) tribofilm formation caused by interactions with the environment during operation, which consist of the following compounds: thermal barriers; Magnéli phase tribo-oxides with metallic properties at elevated temperatures, tribo-oxides that transform into a liquid phase at operating temperatures, and mixed action tribo-oxides that serve as thermal barriers/lubricants, and (3) multiscale selforganization processes that occur on the surface of the tool during cutting, which include chip formation, the generation of adhesive layers, and the buildup edge formation. In-depth knowledge of these processes can be used to significantly increase the wear resistance of the coated cutting tools. This can be achieved by the application of the latest generation of complex adaptive surface-engineered systems represented by several state-of-the-art adaptive nano-multilayer PVD coatings, as well as high entropy alloy coatings (HEAC)

    Micro-impact testing of AlTiN and TiAlCrN coatings

    Get PDF
    A novel micro-scale repetitive impact test has been developed to assess the fracture resistance of hard coatings under dynamic high strain rate loading. It is capable of significantly higher impact energies than in the nano-impact test. It retains the intrinsic depth-sensing capability of the nano-impact test enabling the progression of the damage process to be monitored throughout the test, combined with the opportunity to use indenters of less sharp geometry and still cause rapid coating failure. The micro-impact test has been used to study the resistance to impact fatigue of Al-rich PVD nitride coatings on cemented carbide. The impact fatigue mechanism has been investigated in nano- and micro-scale impact tests. Coating response was highly load-dependent. A Ti0.25Al0.65Cr0.1N coating with high H3/E2 performed best in the nano- and micro- impact tests although it was not the hardest coating studied. The role of mechanical properties, microstructure and thickness on impact behaviour and performance in cutting tests is discussed

    Elevated temperature repetitive micro-scratch testing of AlCrN, TiAlN and AlTiN PVD coatings

    Get PDF
    In developing advanced wear-resistant coatings for tribologically extreme highly loaded applications such as high speed metal cutting a critical requirement is to investigate their behaviour at elevated temperature since the cutting process generates frictional heat which can raise the temperature in the cutting zone to 700–900 °C or more. High temperature micro-tribological tests provide severe tests for coatings that can simulate high contact pressure sliding/abrasive contacts at elevated temperature. In this study ramped load micro-scratch tests and repetitive micro-scratch tests were performed at 25 and 500 °C on commercial monolayer coatings (AlCrN, TiAlN and AlTiN) deposited on cemented carbide cutting tool inserts. AlCrN exhibited the highest critical load for film failure in front of the moving scratch probe at both temperatures but it was prone to an unloading failure behind the moving probe. Scanning electron microscopy showed significant chipping outside the scratch track which was more extensive for AlCrN at both room and elevated temperature. Chipping was more localised on TiAlN although this coating showed the lowest critical loads at both test temperatures. EDX analysis of scratch tracks after coating failure showed tribo-oxidation of the cemented carbide substrate. AlTiN showed improved scratch resistance at higher temperature. The von Mises, tensile and shear stresses acting on the coating and substrate sides of the interface were evaluated analytically to determine the main stresses acting on the interface. At 1 N there are high stresses near the coating-substrate interface. Repetitive scratch tests at this load can be considered as a sub-critical load micro-scale wear test which is more sensitive to adhesion differences than the ramped load scratch test. The analytical modelling showed that a dramatic improvement in the performance of AlTiN in the 1 N test at 500 °C could be explained by the stress distribution in contact resulting in a change in yield location due to the high temperature mechanical properties. The increase in critical load with temperature on AlTiN and AlCrN is primarily a result of the changing stress distribution in the highly loaded sliding contact rather than an improvement in adhesion strength

    Nanomechanical testing of thin films to 950 °C

    Get PDF
    Nanomechanical testing has been a revolutionary technique in improving our fundamental understanding of the basis of mechanical properties of thin film systems and the importance of the nanoscale behaviour on their performance. However, nanomechanical tests are usually performed in ambient laboratory conditions even if the coatings being developed are expected to perform at high temperature in use. It is important to measure nanomechanical and tribological properties of materials under test conditions that are closer to their operating conditions where the results are more relevant. We can then better understand the links between properties and performance and design advanced materials systems for increasingly demanding applications. However, high temperature nanomechanics is highly challenging experimentally and a high level of instrument thermal stability is critical for reliable results. To achieve this stability the NanoTest Vantage has been designed with (i) active heating of the sample and the indenter (ii) horizontal loading to avoid convection at the displacement sensor (iii) patented stage design and thermal control method. By separately and actively heating and controlling the temperatures of both the indenter and test sample there is minimal/no thermal drift during the high temperature indentation and measurements can be performed as reliably as at room temperature. Illustrative results are presented for TiAlN, TiFeN, DLC and MAX-phase coatings. Above 500 °C it is necessary to use Argon purging to limit oxidation of samples and the diamond indenter, although the efficiency of this decreases over 750 °C. To test at higher temperatures without indenter or sample oxidation an ultra-low drift high temperature vacuum nanomechanics system (NanoTest Xtreme) has been recently developed. Results with the vacuum system are presented up to 950 °C

    Hybrid Ti-MoS2 coatings for dry machining of aluminium alloys

    Get PDF
    Combinatorial deposition, comprising filtered cathodic vacuum arc (FCVA) and physical vapor deposition (PVD) magnetron sputtering is employed to deposit molybdenum disulphide (MoS2) and titanium (Ti) thin films onto TiB2-coated tool inserts specifically designed for the dry machining of aluminium alloys. Titanium is deposited by FCVA while MoS2 is magnetron sputtered. The deposition set up allows several compositions of Ti-MoS2 to be deposited simultaneously, with Ti content ranging between 5 and 96 at. %, and their machining performances to be evaluated. Milling took place using a CNC Vertical Machining Center at a 877 mm/min feed rate. The effect of different coating compositional ratios on the degree of aluminium sticking when a milling insert is used to face mill an Al alloy (SAE 6061) was investigated using a combination of energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) analysis. XPS studies suggest that the greater degree of Al sticking on the rake face of the inserts is due to the formation of greater amounts of non-protective Ti-O phases. EDX mapping of the milling inserts after machining reveal that a Ti:MoS2 ratio of around 0.39 prevents Al from sticking to the tool edges. Since we prevent Al from sticking to the tool surface, the resultant machined surface finish is improved thus validating the machining performance of TiB2-coated tools using optimum compositions of Ti:MoS2 thin film coatings

    Secondary structures on the friction surface of diamond-like coating

    Get PDF
    Peculiarities of the formation of secondary structures on the surface of a diamond-like coating are studied on the example of a friction contact between a steel ball and a diamond-like coating. The friction surface was examined in various areas; the zone of wear products (the boundary of the friction track) and the original surface outside the friction area. It is shown that secondary structures with a high content of iron, nickel, manganese, chromium, and oxygen are characteristic of areas with the highest wear resistance. Such secondary structures are formed because of the intense interaction of the diamond-like coating with the steel of the ball during dry friction

    DLC and DLC-WS2 coatings for machining of aluminium alloys

    Get PDF
    Machine-tool life is one limiting factor affecting productivity. The requirement for wear-resistant materials for cutting tools to increase their longevity is therefore critical. Titanium diboride (TiB2) coated cutting tools have been successfully employed for machining of AlSi alloys widely used in the automotive industry. This paper presents a methodological approach to improving the self-lubricating properties within the cutting zone of a tungsten carbide milling insert precoated with TiB2, thereby increasing the operational life of the tool. A unique hybrid Physical Vapor Deposition (PVD) system was used in this study, allowing diamond-like carbon (DLC) to be deposited by filtered cathodic vacuum arc (FCVA) while PVD magnetron sputtering was employed to deposit WS2. A series of ~100-nm monolayer DLC coatings were prepared at a negative bias voltage ranging between −50 and −200 V, along with multilayered DLC-WS2 coatings (total thickness ~500 nm) with varying number of layers (two to 24 in total). The wear rate of the coated milling inserts was investigated by measuring the flank wear during face milling of an Al-10Si. It was ascertained that employing monolayer DLC coating reduced the coated tool wear rate by ~85% compared to a TiB2 benchmark. Combining DLC with WS2 as a multilayered coating further improved tool life. The best tribological properties were found for a two-layer DLC-WS2 coating which decreased wear rate by ~75% compared to TiB2, with a measured coefficient of friction of 0.05

    Facilitating TiB2 for filtered vacuum cathodic arc evaporation

    Get PDF
    TiB2 is well established as a superhard coating with a high melting point and a low coefficient of friction. The brittle nature of borides means they cannot be utilised with arc evaporation, which is commonly used for the synthesis of hard coatings as it provides a high deposition rate, fully ionised plasma and good adhesion. In this work, TiB2 conical cathodes with non-standard sintering additives (carbon and TiSi2) were produced, and the properties of the base material, such as grain structure, hardness, electrical resistivity and composition, were compared to those of monolithic TiB2. The dependence of the produced cathodes’ electrical resistivity on temperature was evaluated in a furnace with an argon atmosphere. Their arc–evaporation suitability was assessed in terms of arc mobility and stability by visual inspection and by measurements of plasma electrical potential. In addition, shaping the cathode into a cone allowed investigation of the influence of an axial magnetic field on the arc spot. The produced cathodes have a bulk hardness of 23–24 GPa. It has been found that adding 1 wt% of C ensured exceptional arc-spot stability and mobility, and requires lower arc current compared to monolithic TiB2. However, poor cathode utilization has been achieved due to the steady generation of cathode flakes. The TiB2 cathode containing 5 wt% of TiSi2 provided the best balance between arc-spot behaviour and cathode utilisation. Preventing cathode overheating has been identified as a main factor to allow high deposition rate (±1.2 µm/h) from TiB2-C and TiB2-TiSi2 cathodes
    • …
    corecore