
alphaFactory: a tool for generating
the alpha factors of general distributions

(Tool Paper)

Elvio Gilberto Amparore, Susanna Donatelli

Università di Torino, Dipartimento di Informatica, Italy
{amparore,susi}@di.unito.it

Abstract. The Uniformization method computes the probability dis-
tribution of a CTMC of maximum rate µ at the time a general event
with PDF f(x) fires. Usually, f(x) is taken as the deterministic distri-
bution, leading to the computation of the CTMC probability at time
t, but Uniformization may be extended to use other distributions. The
extended Uniformization does not manipulate directly the distribution,
as the whole computation is based on the alpha-factors of f(x), and
the maximum CTMC rate µ. This tool paper describes alphaFactory, a
tool that computes the series of alpha-factors of a general distribution
function starting from f(x). The main goal of alphaFactory is to provide
a freely available implementation for the computation of alpha-factors,
to be used inside any extended Uniformization method implementation.
Truncation of the infinite series of alpha-factors is determined by a novel
error bound, which provides a reliable truncation point also in case of
defective PDFs. alphaFactory can be easily integrated into other existing
tools, and we show its integration inside the GreatSPN framework, to
solve Markov Regenerative Stochastic Petri Nets.

Keywords: alpha-factors, general distributions, Markov Regenerative
Processes, Markov Regenerative Stochastic Petri Nets, GreatSPN, ex-
tended uniformization.

1 Introduction

The Uniformization method in its basic form [16, 21] computes the probability
distribution of a CTMC of maximum rate µ at a fixed time t. This method has
been widely applied to the computation of the transient solutions of systems in
many domains, systems expressed using a variety of formalisms (queuing net-
works, stochastic Petri nets, stochastic process algebra, . . .). The Uniformization
method in its extended form [15] computes the probability distribution at time t,
with t distributed according to a random variable. A typical application of this
method is found in the steady-state solution of Markov Regenerative Stochastic
Petri Nets (MRSPN) [11], i.e. stochastic Petri nets where transitions have expo-
nential and generally-distributed delays, subject to the constraint that at most

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302213771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

one general event is enabled in any state (so called enabling restriction). MR-
SPN are a generalization of Deterministic and Stochastic Petri Nets (DSPN) [1].
Furthermore, the computation of CTMC probabilities at time t, where t is gener-
ally distributed, is a central step in the computation of the subordinated Markov
chains of Markov Regenerative Processes (MRgP) [18].

The general event firing distribution can be described by its probability dis-
tribution function (PDF) f(x). Extended Uniformization does not manipulate
directly f(x), but instead the whole computation is based on the alpha-factors
of f(x) and the maximum CTMC rate µ. Intuitively, the alpha-factor α(m,µ) of
f(x) for a CTMCM of maximum rate µ is the probability of taking m steps in
the uniformized DTMC ofM before the generally distributed event fires. Alpha-
factors form an infinite sequence for m ∈ N≥0, usually truncated according to a
certain error bound ε. For the deterministic case, the alpha-factors reduce to a se-
quence of Poisson probabilities, which are usually computed with the Fox–Glynn
method [13][17] due to its numerical stability. For arbitrary general distributions
f(x), the problem of computing alpha-factors reduces to the computation of an
integral of the product of f(x) with a Poisson probability. To allow a variety of
general functions, the computation should do symbolic integration of f(x).

Some applications also need a reliable support for defective PDFs, i.e. dis-
tribution functions f(x) with 0 <

(∫∞
0
f(x) dx

)
< 1. This makes the tool more

robust when the PDF definition has small numerical error which may happen,
for instance, when using fitted expolynomial distributions.

Contribution: This tool paper describes alphaFactory, a program that computes
the alpha-factors of general distribution functions from their probability distri-
bution function f(x) and the maximum CTMC rate µ. alphaFactory is written
in ISO C++ and has only the Boost-C++ library1 as a dependency.

alphaFactory provides a freely available implementation for the computation
of alpha-factors. The tool is designed to be used both as a standalone command
line program, or linked as a component into another program, using a simple
API. At its core the tool implements the definition and derivation of alpha-factors
provided by German in [15], with a new truncation point of the sequence that
is correct for both defective and non-defective PDFs. A proof of the correctness
of the new error bound is given in Section 5.

The paper also describes how the use of alphaFactory has allowed the exten-
sion of the GreatSPN framework [2] to include the solution of MRSPN. Indeed,
thanks to the use of alphaFactory the DSPN solver of GreatSPN [3] was easily
transformed into an MRSPN solver.

Existing tools. There is a single tool that we know of which offers an implementa-
tion of Extended Uniformization and of the alpha-factors: SPNica [14]. SPNica is
a Mathematica package written by R. German for solving MRSPN and, accord-
ing to our experience, it is a very reliable solver, which unfortunately does not
scale up to even moderately sized models (few hundreds of states): indeed, by
definition of the author himself [14], SPNica is a prototype, a proof of concept.

1 http://www.boost.org/

SPNica includes an implementation of the functions for alpha-factors compu-
tation, but their use requires the availability of the proprietary Mathematica
framework. The software structure of alphaFactory is heavily influenced by the
design choices of SPNica, but alphaFactory does not have the dependency on
Mathematica as it is all implemented in ISO C++.

A second software that includes Extended Uniformization, again based on
the technique proposed by German in [15], is TimeNET [23][7], which supports
eDSPN Petri net models with general transitions (basically MRSPN nets). How-
ever, the alpha-factors module is not a separate independent component, and no
clear analysis of its characteristics were possible, The expression language for
general distributions supported by TimeNET is similar to that of SPNica, and
also to that of alphaFactory, because of the common SPNica source.

Extended Uniformization is an efficient technique for MRSPN, but there
are other tools that can solve MRSPN as a particular case of Non Markovian
Stochastic Petri Nets, where typically the enabling restriction of only one general
transition enabled in any state, is lifted. The tool WebSPN [6] represents non-
Markovian transitions using state-space expansion [19], either discrete (which
catches well the behaviour of low-variance distributions like the deterministic or
the uniform) or continuous (which catches well high-variance distributions, like
hyper-exponentials). In that case, the general distribution behaviour is approx-
imated using a larger state space, represented as a Kronecker product. Another
tool that supports general distributions is Oris [8], which again follows a differ-
ent approach than the one considered in this paper, based on representation and
manipulation of mathematical expressions and functions supported over poly-
hedral and Difference Bound Matrix (DBM) domains [10]. The Oris approach is
particularly well suited for expolynomials distributions. Both WebSPN and Oris
have a more expensive solution than the one based on Extended Uniformization:
WebSPN in terms of larger state spaces, and Oris in computation time due to
the need of performing symbolic manipulation of functions. This is certainly not
surprising considering that these tools offer a solution for Petri nets with more
than one general transitions enabled in a state. Another approach that targets
MRSPN analysis is based on Laplace transform inversion, as described in [12].

Paper outline. Section 2 recalls the Uniformization method and its extended
form, along with the alpha-factors definition, whose properties are recalled in
Section 3, extended to the defective distribution case. Section 4 describes the ar-
chitecture of the tool, in particular the structure of the alpha-factors evaluation.
Section 5 and 6 describe the computation of the error bound and the alpha-
factor algorithm. Section 7 describes how alphaFactory can be integrated into
existing tools, a possibility that is illustrated by the integration in GreatSPN;
An example of application of the tool to a real model is also shown. Finally,
section 8 concludes the paper by identifying new possible research development
based on the availability of alphaFactory.

2 Problem definition

The Uniformization method [16][21] is used to compute the instantaneous and
accumulated transient probabilities of CTMCs. In its extended form [15] it is
defined as follows. Let Q be the infinitesimal generator of the CTMC, and let
γ = maxi (−Qi,i) be the maximum rate in any CTMC state. The uniformized
DTMC U of Q is then defined as 1

µQ + I, for an arbitrary µ ≥ γ.
Let g be the event that ends the transient evaluation of the CTMC. g can be

seen as an event that is concurrently enabled with the other events represented
by the CTMC Q. Let f(x) be the PDF of g. The PDF f(x) is required to be
integrable. Let F (x) be the CDF of g. Given an initial probability distribution π0

over the CTMC states, the instantaneous and accumulated transient probability
distribution at the time g fires are given by:

πinst
g = π0 ·

∞∑
m=0

Um · αf (m,µ), πacc
g = π0 ·

∞∑
m=0

Um · αF̄ (m,µ) (1)

The scalar term αf (m,µ) is the alpha-factor of the PDF f(x) for rate µ. The
scalar term αF̄ (m,µ) is the alpha-factor of the complementary CDF (CCDF) for
rate µ, where the complement CDF F̄ (x) is defined as (1−F (x)). The term πacc

g

is also commonly referred to as the cumulative sojourn time distribution.
The alpha-factors are defined as:

αf (m,µ) =

∫ ∞
0

e−µx
(µx)m

m!
· f(x) dx =

∫ ∞
0

β(m,µx) · f(x) dx

αF̄ (m,µ) =

∫ ∞
0

e−µx
(µx)m

m!
· F̄ (x) dx =

∫ ∞
0

β(m,µx) · F̄ (x) dx

(2)

for m ∈ N≥0, µ > 0, and with β(m,λ) =
λme−λ

m!
the m-th Poisson probability.

In many applications, f(x) is chosen to be distributed as a deterministic event
that happens at time t. Hence, its PDF is a Dirac impulse fdet(x) = δ(x − t),
and its CDF is the discontinuous function Fdet(x) = 1 if x ≤ t and 0 otherwise.
In this case, the integral can be simplified [22], leading to:

αfdet
(m,µ) = e−µt

(µt)m

m!
, αF̄det

(m,µ) =
1

µ

(
1−

m∑
k=0

e−µt
(µt)k

k!

)
(3)

However, we are interested in the computation of the alpha-factors as in Eq. (2),
which is more general. From an implementation point-of-view, the two most
relevant problems of computing Eq. (2) are the necessity of a symbolic integrator,
and the numerical stability of the formulas. Both will be treated in Section 4.

3 Properties of alpha factors:

The work in [15, ch. 8] has derived some of the following properties of alpha-
factors, that we report. Let c =

∫∞
0
f(x) dx. Then:

Property 1. The sum
∑∞
m=0 αf (m,µ) = c, for any µ > 0.

Property 2. The sequence limit of αf (m,µ) is 0: lim
m→∞

αf (m,µ) = 0.

Property 3. If c is finite and f(x) > 0,∀x ≥ 0,
then it holds that: 0 < αf (m,µ) < c for all m ≥ 0.

Property 1 is important because it gives the expected values of the entire se-
quence of αf (m,µ). A non-defective PDF will generate a sequence of alpha-
factors αf (m,µ) that sums to 1. Alpha factors are upper bounded (Property 3)
and converge to 0 (property 2). This allows to establish a truncation point M
to approximate the infinite sequence.

Accumulated alpha-factors are subject to these properties:

Property 4. The accumulated alpha factor αF̄ (m,µ) is given by:

αF̄ (m,µ) =
1

µ

(
1−

m∑
n=0

αf (n, µ)

)
=

1

µ

∞∑
n=m+1

αf (n, µ)

It follows that the sequence of αF̄ (m,µ) converges to 0 when c = 1.

Property 4 is useful since the computation of the accumulated alpha-factors
can be derived from the sole sequence of αf (m,µ). Since we want to consider
also defective PDFs, we extend the previous statements (established in [15]) with
the following properties:

Property 5. The limit of αF̄ (m,µ) is
1− c
µ

. Therefore, when c = 1

the sequence of αF̄ (m,µ) converges to 0.

Proof. A proof of the limit is:

lim
m→∞

αF̄ (m,µ) =
1

µ

(
1− lim

m→∞

m∑
k=0

αf (k, µ)

)
=

1− c
µ

Derivation uses property 4 and 2. �

Property 6. The sum of the sequence of αF̄ (m,µ) is:

∞∑
m=0

(
αF̄ (m,µ)− 1− c

µ

)
=

∫ ∞
0

x · f(x) dx = E[X]

Therefore, the sum does not depend on the value of µ.

Proof. The equivalence can be derived in this way:

∞∑
m=0

(
αF̄ (m,µ)− 1− c

µ

)
=

1

µ

∞∑
m=0

((
1−

m∑
k=0

αf (k, µ)

)
−
(

1−
∞∑
k=0

αf (k, µ)

))
=

=
1

µ

∞∑
m=0

∞∑
k=m+1

αf (k, µ) =
1

µ

∞∑
m=1

m · αf (m,µ) =

=

∞∑
m=1

∫ ∞
0

m

µ
· e−µx (µx)m

m!
· f(x) dx =

=

∞∑
m=0

∫ ∞
0

β(m,µx) · x · f(x) dx =

=

∫ ∞
0

x · f(x) dx = E[X]

Derivation uses properties 4 and 1, and the trivial relation

∞∑
m=0

β(m,µx) = 1. �

Property 7. If c is finite and f(x) > 0,∀x ≥ 0, then it holds that:

αF̄ (m,µ) ≥ 1− c
µ

, ∀m ≥ 0

Proof. Assuming f(x) ≥ 0 for x ≥ 0, it holds that: αf (m,µ) ≥ 0, for any m ≥ 0.
Therefore, property 7 is a direct consequence of property 4, which ensures that
αF̄ (m,µ) values are monotonically non-increasing, and property 5, which gives
the limiting behaviour of the series. �

Property 5 shows that the sequence αF̄ (m,µ) may converge to a value that is
different from 0 for defective PDFs. Property 7 establishes a lower bound for
the sequence. A single truncation point for both the αf (m,µ) and the αF̄ (m,µ)
sequences can then be established based on the convergent behaviours of both.

4 Architecture of alphaFactory

alphaFactory is a small tool written in ISO C++ whose sole purpose is the com-
putation of the alpha-factors αf (m,µ) and αF̄ (m,µ), given the textual repre-
sentation of function f(x) and the rate µ. The tool is made of a single C++
compilation unit, plus a header file. A compile-time macro ALPHAFACTORSLIB

controls whether the tool is compiled as a standalone command-line program,
or linked inside another program. The main goal of alphaFactory is that of being
used inside numerical solvers that use Uniformization for the computation of
instantaneous/accumulated transient probabilities. The tool follows the formula
derivations found in [15, pp.394–398]. For the sake of completeness, we report
the formulas of the transformation rules derived in that book.

The language of the functions φ accepted by alphaFactory is the following:

φ ::= number | φ ◦ φ | Pow(φ, φ) | Exp(φ) | Log(φ) | x |
I(ψ) | R(ψ,ψ) | Uniform(ψ,ψ) | Triangular(ψ,ψ) |
Erlang(ψ,ψ) | TruncatedExp(ψ,ψ) | Pareto(ψ,ψ)

ψ ::= number | ψ ◦ ψ | Pow(ψ,ψ) | Exp(ψ) | Log(ψ)

where ◦ ∈ {+,−, ∗, /}. Number literals are floating point real numbers. The term
x is the integral variable. The functions Pow, Exp and Log are the power, the
exponential and the natural logarithm, respectively. The function I(φ) is a Dirac
delta unit impulse δ(x − φ). It represents the concentration of the probability
mass at single point φ, and it is interpreted as if the probability of a firing at
time φ is 1. The function R(a, b) is a rectangular signal that assumes value 1 over
the range [a, b], and 0 outside that range. The language ψ is just a simplified
language for algebraic expressions over constant terms.
The remaining elements of φ are non-primitive functions:

– Uniform(a, b) is the uniform distribution, defined as 1/(b− a) ∗ R(a, b).
– Triangular(a, b) is the triangular distribution, defined as:

4 ∗ (x− a)

(a− b)2
∗ R
(
a,
a+ b

2

)
− 4 ∗ (x− b)

(a− b)2
∗ R
(
a+ b

2
, b

)

–

Erlang(λ, r) is the Erlang function with rate λ and
r phases, defined as:

λr

(r − 1)!
∗ xr−1 ∗ e−λ∗x

– TruncatedExp(λ, t) is the exponential distribution
of rate λ truncated at time t.
, defined as: λ ∗ e−λ∗x ∗ R(0, t) + e−λ∗t ∗ I(t). It is obtained by multiplying
the exponential distribution with a rectangular signal R(0, t), so that after t
the distribution is truncated. To compensate the truncation, an impulse of
probability e−λ∗t happens at time t, so that the overall truncated exponential
is not a defective PDF.

–

Pareto(k, s) is the Pareto distribution of real scale
parameter k and shape parameter s, s ∈ N>0, defined

as:

{
s∗ks
xs+1 if x > k

0 if x ≤ k

These simple building blocks allow to define common distribution functions,
like expolynomials distributions.

The evaluation of a function f(x) starts by building the Abstract Syntax
Tree (AST) of the formula. The tool uses a recursive descent parser for this
task. ASTs are made by just three node types:

1. Term leaf nodes that contain real values.

2. Symbol leaf nodes that contain the integration variable x.
3. Function nodes, that are n-ary operators for a single arithmetic operand.

The function operand is one among {+,−, ∗, /, Pow, Exp, Log, I, R}, or a non-
primitive operand among {Uniform, Triangular, Erlang, TruncatedExp,
Pareto}.

Once the parser has finished, it is possible to manipulate the expression of
f(x) at the AST level. The tool has four main AST-manipulation functions:
evaluate(e), simplify(e), integrate(e) and moment(e, k).

• evaluate(e) does the numerical evaluation of e. The expression e must have
only constant terms or function, i.e. it cannot have the integration variable x.

• simplify(e) implements polynomial simplification and rearrangement of the
expression argument e into a canonical form. It works by applying a fixed set
of transformation rules. Rules use pattern matching and node substitution, and
are encoded inside the function. For instance, the function x ∗x is canonicalized
as x2, or the function x0 is simplified as 1. The transformation rules are:

simplify(ψ) → evaluate(ψ)
simplify(φ ∗ 1 or φ+ 0) → φ
simplify(φ ∗ φ ∗ . . . ∗ φ) → φn

simplify(φ1 ∗ (φ2 + φ3)) → φ1 ∗ φ2 + φ1 ∗ φ3

simplify(φ0) → 1
simplify(φ1) → φ
simplify(any function φ) → recursively apply simplify on φ operands

The function is also responsible for the expansion of the non-primitive func-
tions Uniform(a, b), Triangular(a, b), Erlang(λ, r), TruncatedExp(λ, t) Pareto(k, s),
and operand reordering (terms in a product are always arranged following a spec-
ified canonical order).

• integrate(e) computes the symbolic integral
∫∞

0
e(x) dx using AST manipu-

lation, assuming that the expression is in canonical form (obtained by simplify).
As before, it implements a set of transformation rules to compute the symbolic
result. The implemented rules are:∫ ∞

0

f(x) dx

integrate(x) → 1
2 ∗ x2

integrate(t) → t ∗ x
integrate(ex) → ex

integrate(ek∗x) → 1
k ∗ ek∗x

integrate(xm) → 1
m+1 ∗ xm+1

integrate(c ∗ I(t)) → c
integrate(c ∗ x ∗ I(t)) → c ∗ t
integrate(c ∗ el∗x ∗ xh ∗ R(0, b)) → c ∗ (−l)−h−1 ∗

(
Γ (h+ 1)−Γ (h+ 1,−b ∗ l)

)

integrate(c ∗ R(a, b)) → integrate(c ∗ R(0, b))− integrate(c ∗ R(0, a))
integrate(c ∗ φ) → c ∗ integrate(φ)
integrate(φ1 − φ2) → integrate(φ1)− integrate(φ2)
integrate(sum of φi) → sum of integrate(φi)

where c, t are constant terms, Γ (z) and Γ (s, z) are the complete and the
upper incomplete gamma functions, respectively. The rules are actually standard
integration rules. A product with a rectangular signal R(a, b) is equivalent to
computing the integral over the [a, b] range instead of the [0,∞) range.

• moment(e, k) is the moment generating function. It computes the k-th moment
of the random variable with PDF e as: evaluate(integrate(e ∗ xk)).

Once alphaFactory has built and simplified the AST e of the expression of
f(x), it starts by computing the 0 and 1 moments of f(x). The 0 moment, being
the area of f(x), is checked to be 1. If it is not, f(x) is a defective PDF, and a
warning message is printed. In some applications, defective PDFs are allowed, so
the tool does not stop for this condition. Property 1 also tells that the 0 moment
gives the sum of the sequence of αf (m,µ), which is used for error bound. The
first moment, being E[X], can be used to bound the sum of αF̄ (m,µ) for non-
defective PDFs (property 6).

At this point, alpha-factors can be computed for AST e using the recursive
function alpha(m,µ, e). This function computes the m-th factor for a CTMC of
rate µ. The function alpha(m,µ, φ) applies these transformation rules to φ:

alpha(φ1 + φ2) → alpha(m,µ, φ1) + alpha(m,µ, φ2)
alpha(c ∗ I(a)) → c ∗ β(m,µ ∗ a)
alpha(I(a)) → β(m,µ ∗ a)
alpha(c ∗ R(a, b)) → alpha(m,µ, c ∗ R(0, b))− alpha(m,µ, c ∗ R(0, a))
alpha(R(a, b)) → alpha(m,µ, R(0, b))− alpha(m,µ, R(0, a))
alpha(c ∗ el∗x ∗ xh) → c ∗ γa(m,µ, h,−l, a)
alpha(c ∗ el∗x ∗ xh ∗ R(0, a)) → c ∗ γ∞(m,µ, h,−l)
alpha(Pareto(k, s)) → − e−µ∗km∗s∗µm

(m−s)∗m!

These formulas are directly derived by solving the integral of Eq. 2 over the
function argument, and are taken from [15, p. 396]. The rest of the evaluation
of the alpha-factors relies on four recursive functions β, γa, γ∞ and η, that are
needed to evaluate the integral terms symbolically. Memoization of the partially
evaluated results is employed to speed up the computation. The m-th Poisson
probability β(m,λ) function is implemented using the usual recursive relation:

β(m,λ) =

e
λ if m = 0
λ ∗ β(m− 1, λ)

k
otherwise

The two γ factors are derived by integrating the expolynomial equations (6th

and 7th rules of alpha) with the Poisson function, expanding Eq. (2). The full

derivation can be found in [15, pp. 154–155]. This results in a recursive relation
for γ∞ and γa, defined as:

γ∞(m,µ, h, l) =


h!

(µ+ l)h+1
if m = 0

m+ h

m
∗ µ

µ+ l
∗ γ∞(m− 1, µ, h, l) otherwise

and:

γa(m,µ, h, l, a) =



h!

(µ+ l)h+1

(
1−

m∑
i=0

β(i, (µ+ l)a)

)
if m = 0

m+ h

m
∗ µ

µ+ l
∗ γa(m− 1, µ, h, l, a)−

−η(m,µ, h, l, a) ∗ β(m, (µ+ l) ∗ a)
otherwise

where γ∞(m,µ, h, l) is equivalent to γa(m,µ, h, l,∞). The η factor is defined as:

η(m,µ, h, l, a) =


ah

µ+ l
if m = 0

η(m− 1, µ, h, l, a) ∗ µ

µ+ l
otherwise

5 Bounds of α-tails:

Since the series of alpha-factors αf (m,µ) and αF̄ (m,µ) are infinite, defined for
all m ∈ N≥0, it is necessary to approximate the sequence up to a right truncation
point M . Using an accuracy parameter ε, the sequence of instantaneous alpha-
factors αf (m,µ) can be truncated at M :

∞∑
m=M+1

αf (m,µ) < ε ⇒
M∑
m=0

αf (m,µ) = c− ε

The relation, derived in [15, p. 152], is directly derived from Property 1, which
ensures that the sum of the entire sequence is c, and Property 2 which ensures
that the sequence converges to 0.

The right truncation point of the sequence of accumulated alpha-factors
αF̄ (m,µ) is slightly different, since they converge to 0 only for non-defective

PDFs (i.e. c = 1). In the general case, the sequence converges to
1− c
µ

, as stated

in Property 5. Therefore, a truncation point M ′ can be set such that:

∞∑
m=M ′+1

(
αF̄ (m,µ)− 1− c

µ

)
< ε ⇒

M ′∑
m=0

(
αF̄ (m,µ)− 1− c

µ

)
= E[X]− ε

using ε as an absolute error for the summation. Therefore, a method can be
devised that ensures that both sequences are truncated below the requested
accuracy ε using R = max(M,M ′) as the truncation point. This requires to
know both the 0-moment c and the first moment E[X] of the random var. X.

6 Alpha-factors computation algorithm

After having introduced all the required elements, it is now possible to show
the core alpha-factors computation function. The pseudo-code of the method is
shown in Algorithm 1.

Algorithm 1 Pseudocode of the alpha-factors generation function.

Function compute alpha factors dbl(f, µ, ε):
e← simplify(parse(f))
c← moment(e, 0)
E[X]← moment(e, 1)
errf ← c
err F̄ ← E[X] if E[X] 6=∞ else 0
m← 0
valueF̄ ← 1

µ

while (errf > ε ∨ err F̄ > ε):
αf (m,µ)← alpha(m,µ, e)

valueF̄ ← valueF̄ −
αf (m,µ)

µ

αF̄ (m,µ)← valueF̄
errf ← errf − αf (m,µ)
err F̄ ← err F̄ −

(
αF̄ (m,µ)− 1−c

µ

)
m← m+ 1

return 〈αf , αF̄ 〉

The algorithm is an implementation of the method defined in [15, p. 394],
with the new bound R described in Section 5. It starts by parsing the func-
tion and building the AST. It then computes the first two moments, initializing
the error control variables errf and err F̄ with the moment values. The func-
tion than iterates until both error thresholds are below ε. At each iteration,
the alpha-factor αf (m,µ) is computed. The accumulated alpha-factor αF̄ (m,µ)
is derived implicitly by subtracting incrementally all the instantaneous alpha-
factors, starting from the initial value 1

µ . This follows Property 4. The algorithm
than subtracts the alpha-factors from the errf and err F̄ control variables, and
repeats. Even if it is true that the sequence of αF̄ (m,µ) can be completely de-
rived from the sequence of αf (m,µ), it is important to compute both together,
in order to establish the single truncation point R that guarantees that both
sequence have an absolute error below ε.

Numerical precision. The alphaFactory implementation uses multi-precision float-
ing point. Floating point precision is controlled using the MPFLOAT PRECISION

constant, which is defaulted to 1024 bits. This allows to treat factors with large
difference in magnitude, without a dangerous loss of precision. Of course, a differ-
ent strategy (like the one used by the previously mentioned Fox–Glynn method)
could be devised to improve the accuracy without resorting to multi-precision
arithmetic. In particular, the error control variables are subject to multiple sub-
tractions, which could result in numerical instability without enough precision.

The strategy used by the Fox–Glynn method and many other Uniformization
methods is that of starting from the central value of the β(m,µ) series, and
the computing the left and right tails independently. Unfortunately, it is hard
to derive a single computational strategy that is at the same time general w.r.t
f(x) and that computes the values in a non-sequential order. However, if we re-
strict to some specific classes of general functions (like expolynomials), a better
strategy could be devised.

Tool Validation. The tool has been validated against the results computed by
SPNica and by a direct evaluation of the alpha-factor formulas in Mathemat-
ica. Results confirm the correctness of the tool on a benchmark of distributions.
The tool is also equipped with a small unit test, that runs using the test com-
mand line argument. The unit test verifies that the tool re-computes correctly
the alpha-factors from a small set of PDFs, and compares the obtained results
with the values computed by evaluating the corresponding formula integrals in
Mathematica.

6.1 Example of running alphaFactory

Figure 1 shows four by three plots obtained running alphaFactory on four PDFs.

Plots.nb 5

f(x) = Erlang(0.75, 4); µ = 1.25; ✏ = 10�7(A)

f(x) = Triangular(2, 6); µ = 0.85; ✏ = 10�7(C)

In[666]:= af = 80.019775390625, 0.0494384765625, 0.0772476196289062,
0.0965595245361328, 0.105611979961395, 0.105611979961395,
0.0990112312138081, 0.0884028850123286, 0.0759712293074699,
0.0633093577562249, 0.0514388531769328, 0.0409172695725601,
0.0319666168535626, 0.0245897052719712, 0.0186618298939067,
0.0139963724204301, 0.0103879326557879, 0.00763818577631466,
0.0055695104618961, 0.00403056678163534, 0.0028969698743004,
0.00206926419592886, 0.00146964786642674, 0.00103833816649716,
0.000730081523318313, 0.000511057066322819, 0.000356265743350042,
0.000247406766215307, 0.000171196646265056, 0.000118066652596591,
8.1170823660156 e - 05, 5.56412904122037 e - 05, 3.80360383677174 e - 05,
2.59336625234437 e - 05, 1.76387042898422 e - 05, 1.19691207681072 e - 05,
8.10409218673926 e - 06, 5.47573796401301 e - 06, 3.69252066652193 e - 06,
2.48535044862053 e - 06, 1.66984483266692 e - 06, 1.12001787556928 e - 06,
7.50011970247282 e - 07, 5.01461491735102 e - 07, 3.34782529993605 e - 07,
2.2318835332907 e - 07, 1.48590072189191 e - 07, 9.87965905513235 e - 08,
6.56071109129883 e - 08, 4.35149205035126 e - 08, 2.88286348335771 e - 08<;

aF = 80.7841796875, 0.74462890625, 0.682830810546875, 0.605583190917969,
0.521093606948853, 0.436604022979736, 0.35739503800869, 0.286672729998827,
0.225895746552851, 0.175248260347871, 0.134097177806325, 0.101363362148277,
0.0757900686654267, 0.0561183044478497, 0.0411888405327243,
0.0299917425963803, 0.0216813964717499, 0.0155708478506982,
0.0111152394811813, 0.00789078605587304, 0.00557321015643272,
0.00391779879968963, 0.00274208050654824, 0.00191140997335051,
0.00132734475469586, 0.000918499101637605, 0.000633486506957572,
0.000435561093985326, 0.000298603776973281, 0.000204150454896008,
0.000139213795967884, 9.47007636381205 e - 05, 6.42719329439466 e - 05,
4.35250029251917 e - 05, 2.94140394933179 e - 05, 1.98387428788322 e - 05,
1.33554691294408 e - 05, 8.97487875823035 e - 06, 6.02086222501281 e - 06,
4.03258186611638 e - 06, 2.69670599998285 e - 06, 1.80069169952743 e - 06,
1.2006821233296 e - 06, 7.99512929941519 e - 07, 5.31686905946635 e - 07,
3.5313622328338 e - 07, 2.34264165532027 e - 07, 1.55226893090968 e - 07,
1.02741204360578 e - 07, 6.79292679577676 e - 08, 4.48663600909059 e - 08<;

GraphicsRow@8Plot@PDF@ErlangDistribution@4, 0.75D, xD,
8x, 0, 12<, AspectRatio Ø 1.5D,

ListPlot@8af<, Filling Ø Axis, PlotStyle Ø 8RGBColor@0.7, 0, 0D<,
AspectRatio Ø 1.5D,

ListPlot@8aF<, Filling Ø Axis, PlotStyle Ø 8RGBColor@0.7, 0, 0D<,
AspectRatio Ø 1.5D<D

2 Plots.nb

In[663]:= af = 80.0422262043936326, 0.124146928733134, 0.191351694802519,

0.205664746759562, 0.172843747970896, 0.120710714944446,

0.0727007565822652, 0.0386998036557073, 0.0185254653776502,

0.00807707611266445, 0.00323883931993454, 0.00120364257165865,

0.000417116265772612, 0.000135479753048423, 4.14191803181298 * 10^-05,
1.19624454945897 * 10^-05, 3.27416729765935 * 10^-06,
8.51625687798836 * 10^-07, 2.11025201799254 * 10^-07<;

aF = 81.12679270071337, 0.980737490439098, 0.755617849494958,

0.513659323895474, 0.31031373804736, 0.168301132230365,

0.0827708303688769, 0.0372416495974565, 0.0154469844472799,

0.00594454196179227, 0.00213414276186928, 0.000718092677564993,

0.000227367659008979, 6.79797142461283 * 10^-05, 1.92512668130345 * 10^-05,
5.17780152528189 * 10^-06, 1.32583999862383 * 10^-06,
3.23927424742844 * 10^-07, 7.56624814496042 * 10^-08<;

GraphicsRow@8Plot@PDF@TriangularDistribution@82, 6<D, xD,
8x, 0, 9<, AspectRatio Ø 1.5D,

ListPlot@8af<, Filling Ø Axis, PlotStyle Ø 8RGBColor@0.7, 0, 0D<,
AspectRatio Ø 1.5D,

ListPlot@8aF<, Filling Ø Axis, PlotStyle Ø 8RGBColor@0.7, 0, 0D<,
AspectRatio Ø 1.5D<D

Plots.nb 3

In[648]:= af = 80.167352225461613, 0.14974289305382, 0.120303305157243, 0.100796044071752,
0.0873455425940392, 0.0758435006214441, 0.0647150317648803,
0.0538693533455604, 0.043706704332694, 0.0346228522117667,
0.0268448190286529, 0.0204235480245756, 0.0152815516912846,
0.0112676960428765, 0.0082011887245198, 0.00590100403268949,
0.0042026453496083, 0.00296571559661899, 0.00207559802783504,
0.00144180572487436, 0.000994757844868912, 0.00068207865005228,

0.000465034586888458, 0.000315405950759686, 0.000212894948340927,
0.000143063531756268, 9.5741656687419 * 10^-05, 6.38273765906594 * 10^-05,
4.23994339879384 * 10^-05, 2.80712670207289 * 10^-05,
1.85269987005152 * 10^-05, 1.21919433649725 * 10^-05,
8.00095508284919 * 10^-06, 5.2369852682201 * 10^-06, 3.41944173203637 * 10^-06,
2.22752132389954 * 10^-06, 1.44788853616455 * 10^-06,
9.39170796166953 * 10^-07, 6.07989449590819 * 10^-07,
3.92854691676337 * 10^-07, 2.53391262837327 * 10^-07,
1.63159246203846 * 10^-07, 1.04888084171951 * 10^-07,
6.73235132947088 * 10^-08, 4.3148251167018 * 10^-08<;

aF = 80.555098516358925, 0.455269920989711, 0.375067717551549, 0.307870354837048,
0.249639993107689, 0.199077659360059, 0.155934304850139, 0.120021402619765,
0.0908835997313028, 0.0678016982567916, 0.0499051522376897,
0.0362894535546392, 0.0261017524271162, 0.0185899550651985,

0.0131224959155186, 0.00918849322705896, 0.00638672966065342,
0.0044095859295741, 0.0030258539110174, 0.0020646500944345,
0.00140147819785522, 0.00094675909782037, 0.000636736039894732,
0.000426465406054941, 0.000284535440494323, 0.000189159752656811,
0.000125331981531865, 8.27803971380922 * 10^-05, 5.45141078127999 * 10^-05,
3.57999297989806 * 10^-05, 2.34485973319705 * 10^-05,
1.53206350886555 * 10^-05, 9.98666503342267 * 10^-06,
6.49534152127594 * 10^-06, 4.21571369991836 * 10^-06,
2.73069948398533 * 10^-06, 1.76544045987563 * 10^-06,
1.13932659576433 * 10^-06, 7.34000296037118 * 10^-07,
4.72097168252893 * 10^-07, 3.03169659694675 * 10^-07,
1.94396828892111 * 10^-07, 1.24471439444143 * 10^-07,
7.95890972476708 * 10^-08, 5.08235964696588 * 10^-08<;

GraphicsRow@8Plot@27 ê 10 * Exp@-3 * xD * x + 2 ê 5 * Exp@-2 * xD * x^2 +
1 ê 10 * Exp@-1 * xD * x^3, 8x, 0, 8<, AspectRatio Ø 1.5D,

ListPlot@8af<, Filling Ø Axis, PlotStyle Ø 8RGBColor@0.7, 0, 0D<,
AspectRatio Ø 1.5D,

ListPlot@8aF<, Filling Ø Axis, PlotStyle Ø 8RGBColor@0.7, 0, 0D<,
PlotRange Ø All, AspectRatio Ø 1.5D<D

Out[650]=

6 Plots.nb

f(x) = 0.3 ⇤ I(5) + 0.5 ⇤ I(10); µ = 3.0; ✏ = 10�7(B)

f(x) =
27

10
e�3xx +

2

5
e�2xx2 +

1

10
e�1xx3; µ = 1.5(D)

c = 0.8; E[X] = 6.5; R = 63c = 1; E[X] = 5.33333; R = 51

c = 1; E[X] = 4; R = 19
c = 1; E[X] = 2.75; R = 45

time m-th ↵F̄ factorm-th ↵f factor

p
ro

b
ab

il
it
y

time m-th ↵F̄ factorm-th ↵f factor

p
ro

b
ab

il
it
y

time m-th ↵F̄ factorm-th ↵f factor

p
ro

b
ab

il
it
y

time m-th ↵F̄ factorm-th ↵f factor

p
ro

b
ab

il
it
y

Fig. 1. Alpha-factor distributions generated by alphaFactory from four PDFs.

For each PDF three graphs are shown: the PDF itself and instantaneous and
accumulated alpha-factors (left to right). The plot header reports the computed
values for c, E[X], and the truncation point R. PDF (A) is an Erlang distribution
of rate 0.75 and 4 phases. Alpha factors are computed for a CTMC of rate
µ = 1.25, with accuracy ε = 10−7. Values for (A) are obtained running the tool

from the command line:

./alphaFactory 'Erlang(0.75, 4)' 1.25 0.0000001

The second line in the header of plot (A) reports the computed values for c and
E[X], and the truncation point R. PDF (B) is a linear combination of two Dirac
impulses, which is intuitively a random choice between two deterministic events.
The combination is defective, as can be seen by the computed integral value
c = 0.8. PDF (C) is a triangular distribution, which is actually decomposed into
a polynomial combination of two rectangular signals. Finally, PDF (D) is an
expolynomial distribution. When run from the command line as a standalone
tool, alphaFactory first writes the two moments of the function, followed by the
number of factors and by a list of one factor per line. The generated alpha-factors
can be used directly inside a Extended Uniformization method, following Eq. (1).

7 Integration of alphaFactory into other softwares

As mentioned before, alphaFactory can be included in another software project as
a static library or as a C++ compilation unit, to be used non-interactively. The
Application Programming Interface of alphaFactory is minimal and it is made
by just two exported functions:

– verify alpha factors expr takes in input a character strings and verifies
if it is a valid input expression for the tool, if it is defective and if the tool
is capable of integrating that function. This function is useful for expression
validation, for instance during model loading, or within a graphical editor.

– compute alpha factors dbl(const char* fg, double mu, double eps)

computes the alpha factor distributions as in Eq. (2). The function returns a
pair of vectors, containing the values of αf (m,µ) and αF̄ (m,µ). Argument
mu is the uniformized CTMC rate. Argument eps specifies the computation
accuracy ε.

The minimalist API allows to integrate the tool into other softwares that use the
Uniformization method with a minimal effort. We have integrated alphaFactory
in our DSPN solver [3], making it capable of solving MRSPN models.

7.1 Integration of alphaFactory into GreatSPN

We now show a small example of an application of generalized functions in
MRSPN, solved with the help of alphaFactory. The tool has been integrated
inside the DSPN solver of GreatSPN [3], which is now capable of solving MRSPN
Petri net models with general transitions with the usual enabling restriction.
We consider the case [5] of a multi-utility company, who works in a specified
geographical area of about 2200km2, with 531K inhabitants. The problem the
company is interested in is the optimal allocation of human resources, in order to
comply with the national regulation authority rules, which require that in case

of call from a client of a detected leak of gas, a technician must be on-site in
less than 1 hour. When on site, the technician first secures the problem. Then,
he may decide to actually fix the problem, if there are no other open requests.
Otherwise, he leaves the site, sending an external plumber to do the fix.

In[2162]:= H* TRAVELLING TIMES - FELINAêSUD *L
felina = 81, 6, 6, 7, 10, 12, 13, 18, 21, 22, 25, 26, 28, 29, 29, 33, 34, 35,

36, 37, 37, 39, 39, 40, 40, 41, 42, 42, 47, 49, 49, 49.3, 51, 52, 53, 53, 54, 56, 61, 62, 63, 69, 70<;
est = 81, 2, 2, 4, 5, 9, 10, 11, 11, 12, 12, 13, 13, 13, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 20, 20, 20, 20,

21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 26, 26, 27, 27, 27, 27, 27, 27,
27, 28, 28, 28, 28, 28, 28, 29, 29, 29, 30, 30, 30, 30, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33, 33, 34, 34, 35, 36,
36, 36, 37, 37, 37, 37, 37, 38, 38, 39, 40, 40, 41, 41, 42, 43, 44, 44, 44, 44, 47, 47, 49, 52, 52, 53, 55, 55, 62<;

ovest = 82, 2, 3, 3, 3, 5, 5, 6, 7, 7, 7, 7, 7, 9, 9, 10, 10, 10, 11, 12, 12, 12, 12, 12, 13, 14, 14, 14, 15, 15, 15, 15, 15,
16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 21, 22, 22, 22, 23, 23, 23, 23, 23, 23,
23, 23, 23, 23, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, 28, 28, 29, 29, 29,
29, 29, 29, 29, 29, 30, 30, 30, 30, 31, 31, 32, 32, 32, 32, 33, 33, 33, 33, 34, 35, 35, 36, 36, 37, 37, 37, 38, 38, 38, 38,
39, 40, 41, 41, 41, 41, 42, 42, 42, 43, 43, 43, 44, 46, 47, 47, 48, 49, 49, 51, 51, 52, 56, 58H*100,125,151,164*L<;

nord = 81, 2, 2, 4, 5, 5, 6, 6, 7, 10, 11, 11, 11, 12, 16, 16, 17, 17, 18, 18, 18, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21,
21, 21, 22, 22, 22, 22, 22, 22, 23, 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 27, 27, 27, 27, 27, 28, 28, 28, 29, 29, 29, 29,
29, 29, 30, 30, 30, 31, 31, 31, 32, 32, 33, 33, 33, 34, 34, 35, 35, 35, 35, 35, 35, 36, 36, 36, 37, 37, 37, 37, 37, 37, 38,
38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 40, 40, 40, 40, 41, 41, 41, 42, 42, 42, 42, 43, 44, 44, 44, 44, 44, 45, 45, 45, 46,
46, 46, 46, 46, 46, 46, 46, 47, 47, 48, 51, 52, 53, 53, 54, 55, 55, 56, 62, 63, 69, 73, 87, 90H*,106,106,121,134,183*L<;

mkFit@d_, c_, h_D := Module@8nSamp, pdf, Buckets, max, pdfmax, hl, barchart, mean, erlangdist, plots<,
nSamp = Length@dD;
Buckets = 10;
hl = HistogramList@d, BucketsD;
Buckets = Length@hl@@2DDD;
barchart = BarChart@hl@@2DD, ChartLabels Ø hl@@1DDD;
mean = c; H*Median@dDêêN;*L
pdf = PDF@ErlangDistribution@Ò1, Buckets ê mean * Ò1DD &;
max = Max@hl@@2DDD;
pdfmax = ErlangMaximum@Ò1, Buckets ê mean * Ò1D &;
erlangdist = Hmax ê First@pdfmax@Ò1DD * hL * Hpdf@Ò1DL@Hx - 0.5L * HÒ1L ê 4D &;
plots = Table@Plot@erlangdist@kD, 8x, 0.5, Buckets + 0.5<,

PlotRange Ø Full, ColorFunction Ø HColorData@k + 2, "ColorList"D &L, PlotStyle Ø ThickD, 8k, 4, 4<D;
Print@"mean=", Mean@dD êê N, " max=", max, " last=", Last@hl@@1DDD, " Buckets=", Buckets, " ", pdfmax@2DD;
Return@8barchart, plots<D;

D;
data = 8nord, ovest, est, felina<;
coeff = 835, 70, 85, 35<;
hcoeff = 81, 0.8, 0.75, 0.9<;
H*coeff=835,70,85,40<;
hcoeff=81,0.8,0.75,0.9<;*L
shows = Table@Show@mkFit@data@@kDD, coeff@@kDD, hcoeff@@kDDDD, 8k, 1, Length@dataD<D;
GraphicsGrid@88shows@@1DD, shows@@2DD<, 8shows@@3DD, shows@@4DD<<D
mean=32.6467 max=39 last=100 Buckets=10 80.210217, 8x Ø 1.74999<<

mean=25.5267 max=29 last=60 Buckets=12 80.12613, 8x Ø 2.91666<<

mean=27.8167 max=25 last=65 Buckets=13 80.112528, 80.000265571 Ø 3.26917<<

mean=36.8907 max=9 last=80 Buckets=8 80.168173, 8x Ø 2.1875<<

Out[2171]=

2 barchart-securing.nb

(a) Travelling time distribution.

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

(b) Securing time distribution

Fig. 2. Data samples from which the general distributions were derived.

Figure 2 shows the travelling time distribution and securing time distribu-
tion, extracted from the company log (about 600 samples). We used the Erlang
distribution for data fitting, deriving using the company logs an Erlang(1.15, 3)
for the travelling time, and Erlang(1.6, 4) for the securing time. We do not have
precise timing for the repairing phase, but the company told us that the time
is usually in the order of 10-30 minutes. Hence, we modeled the repairing time
with a Uniform(10, 30).

Fig. 3. Simplified MRSPN of the multi-utility company repairmen problem used in [5].

The MRSPN model of the simplified multi-utility company is depicted in
Figure 3. Distribution functions are written as annotations of the general tran-
sition (black rectangles) in the graphical representation of the MRSPN. The
functions are passed verbatim to alphaFactory during the solution process. We
run the steady-state MRSPN solver on the model, for various client inter-arrival

times (IAT), to study the behaviour of the system and the load balance. The
goal of the analysis is to find the client IAT value where the probability of having
another client being served is below 10%.P{Ready=1} E{Waiting}

5 0.123792 8.9102
10 0.123807 8.40266 11
15 0.125931 7.1099
20 0.154249 4.47338
25 0.226982 2.26521
35 0.377941 0.790964
50 0.528441 0.333287
75 0.666909 0.151287

100 0.743325 0.0926767
125 0.79141 0.0654366
150 0.824363 0.0501197
175 0.848399 0.0402773
200 0.866657 0.0335191

0	
0.2	
0.4	
0.6	
0.8	
1	

0	 25	 50	 75	 100	 125	 150	 175	 200	

Pr
ob

ab
ili
ty
	

Client	inter-arrival	0me	

P{Ready=1}	

0	

2	

4	

6	

8	

10	

0	 25	 50	 75	 100	 125	 150	 175	 200	

Ex
pe

ct
ed

	#
	o
f	w

ai
0n

g	
cl
ie
nt
s	

Client	inter-arrival	0me	

E{Wai0ng	Clients}	

Fig. 4. MRSPN performance indexes computed in steady-state.

Figure 4 shows the expected number of clients in the system (left) and the
probability distribution of finding the technician idle (right), for increasing values
of the client IAT. We observe that with a client IAT of ∼28 minutes the proba-
bility of finding another client in queue is about 1. The probability drops rapidly,
and is below 0.1 with an inter-arrival time of 100 minutes. The probability of
finding the technician idle is about ∼74% when the client IAT is 100 minutes.
We therefore conclude that the target system load is at a client IAT value of
about 100 minutes, considering the provided travelling time distributions and
securing time distributions, when a single technician is available.

Overall, the MRSNP has 1116 markings. The steady state solution time for
a single run takes ∼0.2 seconds. In general, we may say that in most cases the
cost of running alphaFactory is negligible, since it needs to be run just once for
each f(x) and µ pair.

8 Conclusions and Future works

This paper describes the tool alphaFactory, whose purpose is the generation of the
alpha-factors of a general distribution f(x). Alpha-factors are used by the Ex-
tended Uniformization method to compute instantaneous/accumulated transient
probabilities at time t, with t distributed as f(x). The main purpose of alphaFac-
tory is to make a standalone, re-usable component to ease the implementation of
Extended Uniformization. This is mostly of interest for MRgP solvers, MRSPN
and DSPN tools, and tools that compute transient CTMC probabilities.

We plan to extend also our Phase-Mission systems [20, 4] tools with alphaFac-
tory, to allow the definition of phases of general duration. This extension is useful
for many processes (like workflow processes) where phases are more naturally de-
scribed with uniform distributions or distributions fitted from data. We also plan
to investigate the use of alphaFactory inside other tools that support more sophis-
ticated data structure representations, like state-spaces in Kronecker form [9].

Availability. The source code of alphaFactory is distributed under a modified
BSD license, and can be found at: https://github.com/amparore/alphaFactory.

References

1. Ajmone Marsan, M., Chiola, G.: On Petri nets with deterministic and exponentially
distributed firing times. In: Advances in Petri Nets. Lecture Notes in Computer
Science, vol. 266/1987, pp. 132–145. Springer Berlin / Heidelberg (1987)

2. Amparore, E.G., Balbo, G., Beccuti, M., Donatelli, S., Franceschinis, G.: 30 Years
of GreatSPN, chap. In: Principles of Performance and Reliability Modeling and
Evaluation: Essays in Honor of Kishor Trivedi, pp. 227–254. Springer, Cham (2016)

3. Amparore, E.G., Donatelli, S.: DSPN-Tool: a new DSPN and GSPN solver for
GreatSPN. In: International Conference on Quantitative Evaluation of Systems.
pp. 79–80. IEEE Computer Society, Los Alamitos, CA, USA (2010)

4. Amparore, E.G., Donatelli, S.: Efficient solution of extended Multiple-Phased Sys-
tems. In: 10th Valuetools Conference. pp. 125–132. EAI (2016)

5. Amparore, E.G., Donatelli, S., Landini, E.: Modelling and Evaluation of a Control
Room application. In: Int. Conf. on Application and Theory of Petri Nets (ATPN)
2017 (Accepted). Springer, Zaragoza, Spain (Jun 2017)

6. Bobbio, A., Puliafito, A., Scarpa, M., Telek, M.: WebSPN: Non-Markovian Stochas-
tic Petri Net Tool. In: 18th Conf. on Application and Theory of Petri Nets (1997)

7. Bodenstein, C., Zimmermann, A.: TimeNET optimization environment: batch sim-
ulation and heuristic optimization of SCPNs with TimeNET 4.2. In: 8th Int. Conf.
on Performance Evaluation Methodologies and Tools. pp. 129–133. ICST (2014)

8. Bucci, G., Carnevali, L., Ridi, L., Vicario, E.: Oris: a tool for modeling, verification
and evaluation of real-time systems. International Journal on Software Tools for
Technology Transfer 12(5), 391–403 (2010)

9. Buchholz, P.: Markov matrix market.
ls4-www.cs.tu-dortmund.de/download/buchholz/struct-matrix-market.html

10. Carnevali, L., Ridi, L., Vicario, E.: A Framework for Simulation and Symbolic State
Space Analysis of Non-Markovian Models, pp. 409–422. Springer Berlin Heidelberg,
Berlin, Heidelberg (2011)

11. Choi, H., Kulkarni, V.G., Trivedi, K.S.: Markov regenerative stochastic Petri nets.
Performance Evaluation 20(1-3), 337–357 (1994)

12. Dingle, N.J., Harrison, P.G., Knottenbelt, W.J.: Response time densities in gener-
alised stochastic Petri nets. In: Workshop on Software and Perf. pp. 46–54 (2002)

13. Fox, B.L., Glynn, P.W.: Computing Poisson probabilities. Communications of the
ACM 31(4), 440–445 (1988)

14. German, R.: Markov Regenerative Stochastic Petri Nets with general execution
policies: Supplementary variable analysis and a prototype tool. Performance Eval-
uation 39(1-4), 165–188 (Feb 2000)

15. German, R.: Performance Analysis of Communication Systems with Non-
Markovian Stochastic Petri Nets. John Wiley & Sons, Inc., New York, USA (2000)

16. Grassmann, W.: Transient solutions in markovian queueing systems. Computers
and Operations Research 4(1), 47–53 (1977)

17. Jansen, D.N.: Understanding Fox and Glynn’s “Computing Poisson probabilities”.
Tech. rep., Nijmegen : ICIS R11001 (2011)

18. Kulkarni, V.G.: Modeling and analysis of stochastic systems. Chapman & Hall
Ltd., London, UK (1995)

19. Longo, F., Scarpa, M.: Two-layer symbolic representation for stochastic models
with Phase-type distributed events. International Journal of Systems Science 46(9),
1540–1571 (Jul 2015)

20. Mura, I., Bondavalli, A., Zang, X., Trivedi, K.S.: Dependability modeling and eval-
uation of phased mission systems: a DSPN approach. In: Int. Conf. on Dependable
Computing for Critical Applications (DCCA). pp. 299–318. IEEE (1999)

21. Stewart, W.J.: Introduction to the numerical solution of Markov chains. Princeton
University Press (1994)

22. Trivedi, K.S., Reibman, A.L., Smith, R.: Transient analysis of Markov and Markov
reward models. In: Computer Performance and Reliability ’87. pp. 535–545 (1987)

23. Zimmermann, A., Freiheit, J., German, R., Hommel, G.: Petri Net Modelling and
Performability Evaluation with TimeNET 3.0. In: Proc. of the 11th Int. Conf. on
Modelling Techniques and Tools (TOOLS). pp. 188–202. Springer, London (2000)

