15 research outputs found

    Ein Mathematiker mit universalem Anspruch : über Max Dehn und sein Wirken am Mathematischen Seminar

    Get PDF
    Für eine erste Blüte der Mathematik in Frankfurt gab Max Dehn (1878 –1952) in den Jahren ab 1921 bis 1935 entscheidende Impulse. Seine völlig neuen Ideen zur Knotentheorie und zur Topologie beeinflussten die Entwicklung der Mathematik weit über Deutschland hinaus. 1935 fand sein Wirken in Frankfurt durch den Terror der Nationalsozialisten ein jähes Ende. Nach einer gefahrvollen Flucht über Norwegen, Finnland, die Sowjetunion und Japan erreichte Dehn schließlich, 62-jährig, die Vereinigten Staaten von Nordamerika. Eine seinen Fähigkeiten entsprechende Stellung konnte er dort nicht mehr erlangen. Sein fünfzigster Todestag in diesem Jahr ist Anlass für diese Rückschau

    Über Normalisatoren der Zopfgruppe

    No full text

    Knots

    No full text

    Knots

    No full text
    This book is an introduction to classical knot theory. Topics covered include: different constructions of knots, knot diagrams, knot groups, fibred knots, characterisation of torus knots, prime decomposition of knots, cyclic coverings and Alexander polynomials and modules together with the free differential calculus, braids, branched coverings and knots, Montesinos links, representations of knot groups, surgery of 3-manifolds and knots. Knot theory has expanded enormously since the first edition of this book published in 1985. A special feature of this second completely revised and extended edition is the introduction to two new constructions of knot invariants, namely the Jones and homfly polynomials and the Vassiliev invariants. The book contains many figures and some tables of invariants of knots. This comprehensive account is an indispensable reference source for anyone interested in both classical and modern knot theory. Most of the topics considered in the book are developed in detail; only the main properties of fundamental groups and some basic results of combinatorial group theory are assumed to be known. The text is accessible to advanced undergraduate and graduate students in mathematics

    Knots

    No full text
    International audienceThis 3. edition is an introduction to classical knot theory. It contains many figures and some tables of invariants of knots. This comprehensive account is an indispensable reference source for anyone interested in both classical and modern knot theory. Most of the topics considered in the book are developed in detail; only the main properties of fundamental groups and some basic results of combinatorial group theory are assumed to be know

    Darstellungen von Knotengruppen und eine Knoteninvariante

    No full text
    corecore