3,025 research outputs found

    Systematic errors in diffusion coefficients from long-time molecular dynamics simulations at constant pressure

    Full text link
    In molecular dynamics simulations under periodic boundary conditions, particle positions are typically wrapped into a reference box. For diffusion coefficient calculations using the Einstein relation, the particle positions need to be unwrapped. Here, we show that a widely used heuristic unwrapping scheme is not suitable for long simulations at constant pressure. Improper accounting for box-volume fluctuations creates, at long times, unphysical trajectories and, in turn, grossly exaggerated diffusion coefficients. We propose an alternative unwrapping scheme that resolves this issue. At each time step, we add the minimal displacement vector according to periodic boundary conditions for the instantaneous box geometry. Here and in a companion paper [J. Chem. Phys. XXX, YYYYY (2020)], we apply the new unwrapping scheme to extensive molecular dynamics and Brownian dynamics simulation data. We provide practitioners with a formula to assess if and by how much earlier results might have been affected by the widely used heuristic unwrapping scheme.Comment: 6 pages, 5 figures. The following article has been accepted for publication at The Journal of Chemical Physic

    Half-open Penning trap with efficient light collection for precision laser spectroscopy of highly charged ions

    Full text link
    We have conceived, built and operated a 'half-open' cylindrical Penning trap for the confinement and laser spectroscopy of highly charged ions. This trap allows fluorescence detection employing a solid angle which is about one order of magnitude larger than in conventional cylindrical Penning traps. At the same time, the desired electrostatic and magnetostatic properties of a closed-endcap cylindrical Penning trap are preserved in this congfiuration. We give a detailed account on the design and confinement properties, a characterization of the trap and show first results of light collection with in-trap produced highly charged ions

    Switchable Magnetic Bottles and Field Gradients for Particle Traps

    Full text link
    Versatile methods for the manipulation of individual quantum systems, such as confined particles, have become central elements in current developments in precision spectroscopy, frequency standards, quantum information processing, quantum simulation, and alike. For atomic and some subatomic particles, both neutral and charged, a precise control of magnetic fields is essen- tial. In this paper, we discuss possibilities for the creation of specific magnetic field configurations which find appli- cation in these areas. In particular, we pursue the idea of a magnetic bottle which can be switched on and off by transition between the normal and the superconducting phase of a suitable material in cryogenic environments, for example in trap experiments in moderate magnetic fields. Methods for a fine-tuning of the magnetic field and its linear and quadratic components in a trap are presented together with possible applications

    Zukunftsfähige Forstwissenschaften? Eine Standortbestimmung zwischen Anspruch und Wirklichkeit in sieben Thesen und drei Fragen

    Full text link

    Effects of Interface Roughness Scattering on Radio Frequency Performance of Silicon Nanowire Transistors

    Get PDF
    The effects of an atomistic interface roughness in n-type silicon nanowire transistors (SiNWT) on the radio frequency performance are analyzed. Interface roughness scattering (IRS) is statistically investigated through a three dimensional full-band quantum transport simulation based on the sp3d5s?* tight-binding model. As the diameter of the SiNWT is scaled down below 3 nm, IRS causes a significant reduction of the cut-off frequency. The fluctuations of the conduction band edge due to the rough surface lead to a reflection of electrons through mode-mismatch. This effect reduces the velocity of electrons and hence the transconductance considerably causing a cut-off frequency reduction
    • …
    corecore