66 research outputs found

    SLC66 Lysosomal amino acid transporters (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    This is a family of 5 evolutionarily related proteins. Their structural similarities suggest that they are transporters. Biochemical evidence supports transporter activity for SLC66A1 (LAAT1) and SLC66A4 (CTNS; Cystinosin). The functions of the 3 remaining members of the family are undetermined

    SLC66 Lysosomal amino acid transporters in GtoPdb v.2021.2

    Get PDF
    This is a family of 5 evolutionarily related proteins. Their structural similarities suggest that they are transporters. Biochemical evidence supports transporter activity for SLC66A1 (LAAT1) and SLC66A4 (CTNS; Cystinosin). The functions of the 3 remaining members of the family are undetermined

    Systematic in silico discovery of novel solute carrier-like proteins from proteomes.

    Get PDF
    Solute carrier (SLC) proteins represent the largest superfamily of transmembrane transporters. While many of them play key biological roles, their systematic analysis has been hampered by their functional and structural heterogeneity. Based on available nomenclature systems, we hypothesized that many as yet unidentified SLC transporters exist in the human genome, which await further systematic analysis. Here, we present criteria for defining "SLC-likeness" to curate a set of "SLC-like" protein families from the Transporter Classification Database (TCDB) and Protein families (Pfam) databases. Computational sequence similarity searches surprisingly identified ~120 more proteins in human with potential SLC-like properties compared to previous annotations. Interestingly, several of these have documented transport activity in the scientific literature. To complete the overview of the "SLC-ome", we present an algorithm to classify SLC-like proteins into protein families, investigating their known functions and evolutionary relationships to similar proteins from 6 other clinically relevant experimental organisms, and pinpoint structural orphans. We envision that our work will serve as a stepping stone for future studies of the biological function and the identification of the natural substrates of the many under-explored SLC transporters, as well as for the development of new therapeutic applications, including strategies for personalized medicine and drug delivery

    SLC66 Lysosomal amino acid transporters in GtoPdb v.2023.1

    Get PDF
    This is a family of 5 evolutionarily related proteins. Their structural similarities suggest that they are transporters. Biochemical evidence supports transporter activity for SLC66A1 (LAAT1) and SLC66A4 (CTNS; Cystinosin), primarily exporting amino acids from the lysosome to the cytoplasm. The functions of the 3 remaining members of the family are undetermined

    Transporter-Mediated Drug Delivery

    Get PDF
    Transmembrane transport of small organic and inorganic molecules is one of the cornerstones of cellular metabolism. Among transmembrane transporters, solute carrier (SLC) proteins form the largest, albeit very diverse, superfamily with over 400 members. It was recognized early on that xenobiotics can directly interact with SLCs and that this interaction can fundamentally determine their efficacy, including bioavailability and intertissue distribution. Apart from the well-established prodrug strategy, the chemical ligation of transporter substrates to nanoparticles of various chemical compositions has recently been used as a means to enhance their targeting and absorption. In this review, we summarize efforts in drug design exploiting interactions with specific SLC transporters to optimize their therapeutic effects. Furthermore, we describe current and future challenges as well as new directions for the advanced development of therapeutics that target SLC transporters

    Access Path to the Ligand Binding Pocket May Play a Role in Xenobiotics Selection by AhR.

    Get PDF
    Understanding of multidrug binding at the atomic level would facilitate drug design and strategies to modulate drug metabolism, including drug transport, oxidation, and conjugation. Therefore we explored the mechanism of promiscuous binding of small molecules by studying the ligand binding domain, the PAS-B domain of the aryl hydrocarbon receptor (AhR). Because of the low sequence identities of PAS domains to be used for homology modeling, structural features of the widely employed HIF-2alpha and a more recent suitable template, CLOCK were compared. These structures were used to build AhR PAS-B homology models. We performed molecular dynamics simulations to characterize dynamic properties of the PAS-B domain and the generated conformational ensembles were employed in in silico docking. In order to understand structural and ligand binding features we compared the stability and dynamics of the promiscuous AhR PAS-B to other PAS domains exhibiting specific interactions or no ligand binding function. Our exhaustive in silico binding studies, in which we dock a wide spectrum of ligand molecules to the conformational ensembles, suggest that ligand specificity and selection may be determined not only by the PAS-B domain itself, but also by other parts of AhR and its protein interacting partners. We propose that ligand binding pocket and access channels leading to the pocket play equally important roles in discrimination of endogenous molecules and xenobiotics

    A novel proton transfer mechanism in the SLC11 family of divalent metal ion transporters.

    Get PDF
    In humans, the H(+)-coupled Fe(2+) transporter DMT1 (SLC11A2) is essential for proper maintenance of iron homeostasis. While X-ray diffraction has recently unveiled the structure of the bacterial homologue ScaDMT as a LeuT-fold transporter, the exact mechanism of H(+)-cotransport has remained elusive. Here, we used a combination of molecular dynamics simulations, in silico pK a calculations and site-directed mutagenesis, followed by rigorous functional analysis, to discover two previously uncharacterized functionally relevant residues in hDMT1 that contribute to H(+)-coupling. E193 plays a central role in proton binding, thereby affecting transport properties and electrogenicity, while N472 likely coordinates the metal ion, securing an optimally "closed" state of the protein. Our molecular dynamics simulations provide insight into how H(+)-translocation through E193 is allosterically linked to intracellular gating, establishing a novel transport mechanism distinct from that of other H(+)-coupled transporters

    Potential application of network descriptions for understanding conformational changes and protonation states of ABC transporters.

    Get PDF
    The ABC (ATP Binding Cassette) transporter protein superfamily comprises a large number of ubiquitous and functionally versatile proteins conserved from archaea to humans. ABC transporters have a key role in many human diseases and also in the development of multidrug resistance in cancer and in parasites. Although a dramatic progress has been achieved in ABC protein studies in the last decades, we are still far from a detailed understanding of their molecular functions. Several aspects of pharmacological ABC transporter targeting also remain unclear. Here we summarize the conformational and protonation changes of ABC transporters and the potential use of this information in pharmacological design. Network related methods, which recently became useful tools to describe protein structure and dynamics, have not been applied to study allosteric coupling in ABC proteins as yet. A detailed description of the strengths and limitations of these methods is given, and their potential use in describing ABC transporter dynamics is outlined. Finally, we highlight possible future aspects of pharmacological utilization of network methods and outline the future trends of this exciting field
    corecore