634 research outputs found
Is Your Neighborhood Designed to Support Physical Activity? A Brief Streetscape Audit Tool.
INTRODUCTION:Macro level built environment factors (eg, street connectivity, walkability) are correlated with physical activity. Less studied but more modifiable microscale elements of the environment (eg, crosswalks) may also affect physical activity, but short audit measures of microscale elements are needed to promote wider use. This study evaluated the relation of a 15-item neighborhood environment audit tool with a full version of the tool to assess neighborhood design on physical activity in 4 age groups. METHODS:From the 120-item Microscale Audit of Pedestrian Streetscapes (MAPS) measure of street design, sidewalks, and street crossings, we developed the 15-item version (MAPS-Mini) on the basis of associations with physical activity and attribute modifiability. As a sample of a likely walking route, MAPS-Mini was conducted on a 0.25-mile route from participant residences toward the nearest nonresidential destination for children (n = 758), adolescents (n = 897), younger adults (n = 1,655), and older adults (n = 367). Active transportation and leisure physical activity were measured with age-appropriate surveys, and accelerometers provided objective physical activity measures. Mixed-model regressions were conducted for each MAPS item and a total environment score, adjusted for demographics, participant clustering, and macrolevel walkability. RESULTS:Total scores of MAPS-Mini and the 120-item MAPS correlated at r = .85. Total microscale environment scores were significantly related to active transportation in all age groups. Items related to active transport in 3 age groups were presence of sidewalks, curb cuts, street lights, benches, and buffer between street and sidewalk. The total score was related to leisure physical activity and accelerometer measures only in children. CONCLUSION:The MAPS-Mini environment measure is short enough to be practical for use by community groups and planning agencies and is a valid substitute for the full version that is 8 times longer
Tensor polarizability and dispersive quantum measurement of multilevel atoms
Optimally extracting information from measurements performed on a physical
system requires an accurate model of the measurement interaction. Continuously
probing the collective spin of an Alkali atom cloud via its interaction with an
off-resonant optical probe is an important example of such a measurement where
realistic modeling at the quantum level is possible using standard techniques
from atomic physics. Typically, however, tutorial descriptions of this
technique have neglected the multilevel structure of realistic atoms for the
sake of simplification. In this paper we account for the full multilevel
structure of Alkali atoms and derive the irreducible form of the polarizability
Hamiltonian describing a typical dispersive quantum measurement. For a specific
set of parameters, we then show that semiclassical predictions of the theory
are consistent with our experimental observations of polarization scattering by
a polarized cloud of laser-cooled Cesium atoms. We also derive the
signal-to-noise ratio under a single measurement trial and use this to predict
the rate of spin-squeezing with multilevel Alkali atoms for arbitrary detuning
of the probe beam.Comment: Significant corrections to theory and data. Full quality figures and
other information available from http://minty.caltech.edu/papers.ph
Magnetometry via a double-pass continuous quantum measurement of atomic spin
We argue that it is possible in principle to reduce the uncertainty of an
atomic magnetometer by double-passing a far-detuned laser field through the
atomic sample as it undergoes Larmor precession. Numerical simulations of the
quantum Fisher information suggest that, despite the lack of explicit
multi-body coupling terms in the system's magnetic Hamiltonian, the parameter
estimation uncertainty in such a physical setup scales better than the
conventional Heisenberg uncertainty limit over a specified but arbitrary range
of particle number N. Using the methods of quantum stochastic calculus and
filtering theory, we demonstrate numerically an explicit parameter estimator
(called a quantum particle filter) whose observed scaling follows that of our
calculated quantum Fisher information. Moreover, the quantum particle filter
quantitatively surpasses the uncertainty limit calculated from the quantum
Cramer-Rao inequality based on a magnetic coupling Hamiltonian with only
single-body operators. We also show that a quantum Kalman filter is
insufficient to obtain super-Heisenberg scaling, and present evidence that such
scaling necessitates going beyond the manifold of Gaussian atomic states.Comment: 17 pages, updated to match print versio
Differential contribution of the MTOR and MNK pathways to the regulation of mRNA translation in meiotic and postmeiotic mouse male germ cells
Translation of stored mRNAs accounts for protein synthesis during the transcriptionally inactive stages of spermatogenesis. A key step in mRNA translation is the assembly of the initiation complex EIF4F, which is regulated by the MTOR (mammalian target of rapamycin) and MNK1/2 (MAP kinase-interacting kinase 1 and 2) pathways. We investigated the expression and activity of regulatory proteins of these pathways in male germ cells at different stages of differentiation. All translation factors analyzed were expressed in germ cells throughout spermatogenesis. However, while EIF4G and PABP1 (poly[A]-binding protein 1) were more abundant in postmeiotic cells, MTOR and its target EIF4EBP1 (4E-BP1) decreased steadily during spermatogenesis. In vivo labeling showed that pachytene spermatocytes display higher rates of protein synthesis, which are partially dependent on MTOR and MNK activity. By contrast, haploid spermatids are characterized by lower levels of protein synthesis, which are independent of the activity of these pathways. Accordingly, MTOR and MNK activity enhanced formation of the EIF4F complex in pachytene spermatocytes but not in round spermatids. Moreover, external cues differentially modulated the activity of these pathways in meiotic and haploid cells. Heat shock decreased MTOR and MNK activity in pachytene spermatocytes, whereas round spermatids were much less sensitive. On the other hand, treatment with the phosphatase inhibitor okadaic acid activated MTOR and MNK in both cell types. These results indicate that translational regulation is differentially dependent on the MTOR and MNK pathways in mouse spermatocytes and spermatids and suggest that the late stages of germ cell differentiation display constitutive assembly of the translation initiation complex
2-[(1-{[3-(dimethylazaniumyl)propyl]methylamino}ethylidene)azaniumyl]nonahydro-closo-decaborate dimethyl sulfoxide disolvate
The title compound, 2-B10H9NH=C(CH3)N(CH3)CH2CH2CH2N(CH3)2H·2C2H6OS or C8H29B10N3·2C2H6OS, is zwitterionic with the negative charge localized on the decaborate cage and the positive charge on the terminal ammonium group. Two molecules of dimethyl sulfoxide (DMSO) and one molecule of the title compound constitute the asymmetric unit. One DMSO molecule is disordered [ratio 0.739 (3):0.261 (3)]. The bonds and angles within the decaborate cage are within the normal ranges. The amidine fragment of the ligand, which is expected to be planar, is significantly distorted from planarity as exemplified by four torsion angles [B—N—C—C = 8.4 (3), H—N—C—N = 5(2), N—C—N—C = 7.3 (3) and C—C—N—C = 14.8 (3)°] found within this portion of the molecule. The crystal packing consists of head-to-tail-arranged dimers of the title molecule held together by four molecules of DMSO which are attached via strong N—H⋯O and weak C—H⋯O hydrogen bonds
Angular Forces Around Transition Metals in Biomolecules
Quantum-mechanical analysis based on an exact sum rule is used to extract an
semiclassical angle-dependent energy function for transition metal ions in
biomolecules. The angular dependence is simple but different from existing
classical potentials. Comparison of predicted energies with a
computer-generated database shows that the semiclassical energy function is
remarkably accurate, and that its angular dependence is optimal.Comment: Tex file plus 4 postscript figure
Associations of home and neighborhood environments with children’s physical activity in the U.S.-based Neighborhood Impact on Kids (NIK) longitudinal cohort study
Introduction
Physical activity is important for children’s health and well-being. Supportiveness for physical activity of home and neighborhood environments may affect children’s PA, but most studies are cross-sectional. We examined environmental predictors of change in children’s physical activity over two years.
Methods
Data were from the longitudinal, observational cohort study, ‘Neighborhood Impact on Kids’. Participants were children (initially aged 6–12 years) and their parent/caregiver (n = 727 dyads) living in neighborhoods throughout San Diego County, California and King County (Seattle area), Washington, USA. Children’s moderate-to-vigorous physical activity (MVPA) was measured using accelerometers at T1 (Time 1 or baseline, 2007–2009) and T2, the two-year follow-up. At T1, parents survey-reported on physical activity (PA) equipment at home and demographics. Neighborhood environment was measured using spatial data in Geographic Information Systems (intersection density; park availability) and in-person audits (informal play space near home; park-based PA facilities; land use; support for walking/cycling). Generalized additive mixed models estimated total effects, then direct effects, of environmental attributes on MVPA at T1. Two-way moderating effects of child’s sex and age were examined at T1. To examine associations of environmental exposures with changes in MVPA, we estimated interaction effects of environmental attributes on the association between time and MVPA.
Results
On average, children accumulated 146 min/day (standard deviation or SD = 53) of MVPA at T1, and 113 (SD = 58) min/day at T2. There were no significant total or direct effects of environmental attributes on MVPA at T1, and no significant two-way interaction effects of child’s age and sex for T1 MVPA. Having informal play spaces proximal to home with more amenities was associated with less MVPA decline from T1 to T2. Higher residential density, higher land use mix, and higher number of PA facilities in nearby parks were unexpectedly associated with greater MVPA decline.
Conclusion
Higher quality informal play spaces close to home may help offset declines in MVPA during middle childhood, as they may promote unstructured active play with opportunities for parental or neighbor surveillance. Unexpectedly, environmental factors consistent with higher walkability were associated with greater declines in children’s MVPA. As physical activity differs across the lifespan, so may environmental factors that facilitate it
Targeted JAM-C deletion in germ cells by Spo11-controlled Cre recombinase
Meiosis is a crucial process for the production of functional gametes. However, the biological significance of many genes expressed during the meiotic phase remains poorly understood, mainly because of the lethal phenotypes of the knockout mice. Functional analysis of such genes using the conditional knockout approach is hindered by the lack of suitable Cre transgenic lines. We describe here the generation of transgenic mice expressing Cre recombinase under the control of the meiotic Spo11 gene. Using LacZ-R26(loxP) and EYFP-R26(loxP) reporter mice, we show the specific expression and activity of Cre during meiosis in males and females. Spo11(Cre) mice were then crossed with floxed Nbs1 and JAM-C mice to produce conditional knockouts. A strong reduction of Nbs1 and JAM-C protein levels was found in the testis. Although Nbs1-deleted mice developed minor gonadal abnormalities, JAM-C-knockout mice showed a spermiogenetic arrest, as previously described for the null mice. These results provide strong evidence that Spo11(Cre) transgenic mice represent a powerful tool for deleting genes of interest specifically in meiotic and/or in postmeiotic germ cells
The effectiveness of the anti-CD11d treatment is reduced in rat models of spinal cord injury that produce significant levels of intraspinal hemorrhage
We have previously reported that administration of a CD11d monoclonal antibody (mAb) improves recovery in a clip-compression model of SCI. In this model the CD11d mAb reduces the infiltration of activated leukocytes into the injured spinal cord (as indicated by reduced intraspinal MPO). However not all anti-inflammatory strategies have reported beneficial results, suggesting that success of the CD11d mAb treatment may depend on the type or severity of the injury. We therefore tested the CD11d mAb treatment in a rat hemi-contusion model of cervical SCI. In contrast to its effects in the clip-compression model, the CD11d mAb treatment did not improve forelimb function nor did it significantly reduce MPO levels in the hemi-contused cord. To determine if the disparate results using the CD11d mAb were due to the biomechanical nature of the cord injury (compression SCI versus contusion SCI) or to the spinal level of the injury (12th thoracic level versus cervical) we further evaluated the CD11d mAb treatment after a T12 contusion SCI. In contrast to the T12 clip compression SCI, the CD11d mAb treatment did not improve locomotor recovery or significantly reduce MPO levels after T12 contusion SCI. Lesion analyses revealed increased levels of hemorrhage after contusion SCI compared to clip-compression SCI. SCI that is accompanied by increased intraspinal hemorrhage would be predicted to be refractory to the CD11d mAb therapy as this approach targets leukocyte diapedesis through the intact vasculature. These results suggest that the disparate results of the anti-CD11d treatment in contusion and clip-compression models of SCI are due to the different pathophysiological mechanisms that dominate these two types of spinal cord injuries
- …