13 research outputs found
Paracrine signaling by glial cell-derived triiodothyronine activates neuronal gene expression in the rodent brain and human cells
Hypothyroidism in humans is characterized by severe neurological consequences that are often irreversible, highlighting the critical role of thyroid hormone (TH) in the brain. Despite this, not much is known about the signaling pathways that control TH action in the brain. What is known is that the prohormone thyroxine (T4) is converted to the active hormone triiodothyronine (T3) by type 2 deiodinase (D2) and that this occurs in astrocytes, while TH receptors and type 3 deiodinase (D3), which inactivates T3, are found in adjacent neurons. Here, we modeled TH action in the brain using an in vitro coculture system of D2-expressing H4 human glioma cells and D3-expressing SK-N-AS human neuroblastoma cells. We found that glial cell D2 activity resulted in increased T3 production, which acted in a paracrine fashion to induce T3-responsive genes, including ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), in the cocultured neurons. D3 activity in the neurons modulated these effects. Furthermore, this paracrine pathway was regulated by signals such as hypoxia, hedgehog signaling, and LPS-induced inflammation, as evidenced both in the in vitro coculture system and in in vivo rat models of brain ischemia and mouse models of inflammation. This study therefore presents what we believe to be the first direct evidence for a paracrine loop linking glial D2 activity to TH receptors in neurons, thereby identifying deiodinases as potential control points for the regulation of TH signaling in the brain during health and disease.NIHFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Hungarian Scientific Research FundHungarian Academy of SciencesUniv Miami, Miller Sch Med, Div Endocrinol Diabet & Metab, Miami, FL 33136 USAUniversidade Federal de São Paulo, Mol Endocrinol Lab, Div Endocrinol, Dept Med, São Paulo, BrazilHungarian Acad Sci, Inst Expt Med, Lab Endocrine Neurobiol, Budapest, HungaryBrigham & Womens Hosp, Thyroid Sect, Div Endocrinol Diabet & Hypertens, Boston, MA 02115 USATufts Med Ctr, Div Endocrinol Diabet & Metab, Dept Med, Tupper Res Inst, Boston, MA USATufts Univ, Sch Med, Dept Neurosci, Boston, MA 02111 USAUniversidade Federal de São Paulo, Mol Endocrinol Lab, Div Endocrinol, Dept Med, São Paulo, BrazilNIH: DK77086NIH: DK37021FAPESP: 05/55825-8FAPESP: 05/55826-4Hungarian Scientific Research Fund: OTKA K81226Web of Scienc
Endoplasmic Reticulum Stress Decreases Intracellular Thyroid Hormone Activation via an eIF2a-Mediated Decrease in Type 2 Deiodinase Synthesis
Abstract Cells respond rapidly to endoplasmic reticulum (ER) stress by blocking protein translation, increasing protein folding capacity, and accelerating degradation of unfolded proteins via ubiquitination and ER-associated degradation pathways. The ER resident type 2 deiodinase (D2) is normally ubiquitinated and degraded in the proteasome, a pathway that is accelerated by enzyme catalysis of T4 to T3. To test whether D2 is normally processed through ER-associated degradation, ER stress was induced in cells that endogenously express D2 by exposure to thapsigargin or tunicamycin. In all cell models, D2 activity was rapidly lost, to as low as of 30% of control activity, without affecting D2 mRNA levels; loss of about 40% of D2 activity and protein was also seen in human embryonic kidney 293 cells transiently expressing D2. In primary human airway cells with ER stress resulting from cystic fibrosis, D2 activity was absent. The rapid ER stress-induced loss of D2 resulted in decreased intracellular D2-mediated T3 production. ER stress-induced loss of D2 was prevented in the absence of T4, by blocking the proteasome with MG-132 or by treatment with chemical chaperones. Notably, ER stress did not alter D2 activity half-life but rather decreased D2 synthesis as assessed by induction of D2 mRNA and by [35S]methionine labeling. Remarkably, ER-stress-induced loss in D2 activity is prevented in cells transiently expressing an inactive eukaryotic initiation factor 2, indicating that this pathway mediates the loss of D2 activity. In conclusion, D2 is selectively lost during ER stress due to an eukaryotic initiation factor 2-mediated decrease in D2 synthesis and sustained proteasomal degradation. This explains the lack of D2 activity in primary human airway cells with ER stress resulting from cystic fibrosis
Deubiquitination of type 2 iodothyronine deiodinase by von Hippel–Lindau protein–interacting deubiquitinating enzymes regulates thyroid hormone activation
The type 2 iodothyronine deiodinase (D2) is an integral membrane ER-resident selenoenzyme that activates the pro-hormone thyroxine (T4) and supplies most of the 3,5,3′-triiodothyronine (T3) that is essential for brain development. D2 is inactivated by selective conjugation to ubiquitin, a process accelerated by T4 catalysis and essential for the maintenance of T3 homeostasis. A yeast two-hybrid screen of a human-brain library with D2 as bait identified von Hippel–Lindau protein–interacting deubiquitinating enzyme-1 (VDU1). D2 interaction with VDU1 and VDU2, a closely related deubiquitinase, was confirmed in mammalian cells. Both VDU proteins colocalize with D2 in the ER, and their coexpression prolongs D2 half-life and activity by D2 deubiquitination. VDU1, but not VDU2, is markedly increased in brown adipocytes by norepinephrine or cold exposure, further amplifying the increase in D2 activity that results from catecholamine-stimulated de novo synthesis. Thus, deubiquitination regulates the supply of active thyroid hormone to brown adipocytes and other D2-expressing cells
Endoplasmic Reticulum Stress Decreases Intracellular Thyroid Hormone Activation via an eIF2a-Mediated Decrease in Type 2 Deiodinase Synthesis
Cells respond rapidly to endoplasmic reticulum (ER) stress by blocking protein translation, increasing protein folding capacity, and accelerating degradation of unfolded proteins via ubiquitination and ER-associated degradation pathways. The ER resident type 2 deiodinase (D2) is normally ubiquitinated and degraded in the proteasome, a pathway that is accelerated by enzyme catalysis of T(4) to T(3). To test whether D2 is normally processed through ER-associated degradation, ER stress was induced in cells that endogenously express D2 by exposure to thapsigargin or tunicamycin. In all cell models, D2 activity was rapidly lost, to as low as of 30% of control activity, without affecting D2 mRNA levels; loss of about 40% of D2 activity and protein was also seen in human embryonic kidney 293 cells transiently expressing D2. In primary human airway cells with ER stress resulting from cystic fibrosis, D2 activity was absent. The rapid ER stress-induced loss of D2 resulted in decreased intracellular D2-mediated T(3) production. ER stress-induced loss of D2 was prevented in the absence of T(4), by blocking the proteasome with MG-132 or by treatment with chemical chaperones. Notably, ER stress did not alter D2 activity half-life but rather decreased D2 synthesis as assessed by induction of D2 mRNA and by [(35)S]methionine labeling. Remarkably, ER-stress-induced loss in D2 activity is prevented in cells transiently expressing an inactive eukaryotic initiation factor 2, indicating that this pathway mediates the loss of D2 activity. In conclusion, D2 is selectively lost during ER stress due to an eukaryotic initiation factor 2-mediated decrease in D2 synthesis and sustained proteasomal degradation. This explains the lack of D2 activity in primary human airway cells with ER stress resulting from cystic fibrosis
THE THYROID HORMONE INACTIVATING DEIODINASE FUNCTIONS AS HOMODIMER
International audienceThe type 3 deiodinase (D3) inactivates thyroid hormone action by catalyzing tissue-specific inner ring de- iodination, predominantly during embryonic development. D3 has gained much attention as a player in the euthyroid sick syndrome, given its robust reactivation during injury and/or illness. While much of the structure biology of the deiodinases is derived from studies with D2, a dimeric endoplasmic-reticulum obligatory activating deiodinase, little is known about the holostructure of the plasma membrane-resident D3, the deiodinase capable of thyroid hormone inactivation. Here we used fluorescence resonance energy transfer (FRET) in live cells to demonstrate that D3 exists as homodimer. While D3 homodimerized in its native state, minor heterodimerization was also observed between D3:D1 and D3:D2 in intact cells, the significance of which remains elusive. Incubation with 0.5-1.2 M urea resulted in loss of D3 homodimeri- zation as assessed by bioluminescence resonance energy transfer (BRET) and a proportional loss of en- zyme activity, to a maximum of ~50%. Protein modeling using a D2-based scaffold identified potential dimerization surfaces in the transmembrane and globular domains. Truncation of the transmembrane do- main (ΔD3) abrogated dimerization and deiodinase activity except when co-expressed with full-length catalytically inactive deiodinase, thus assembled as ΔD3:D3 dimer; thus the D3 globular domain also ex- hibits dimerization surfaces. In conclusion, the inactivating deiodinase D3 exists as homo- or heterodimer in living intact cells, a feature that is critical for their catalytic activities
Thyroid Hormone Signaling in Male Mouse Skeletal Muscle Is Largely Independent of D2 in Myocytes
The type 2 deiodinase (D2) activates the prohormone T4 to T3. D2 is expressed in skeletal muscle (SKM), and its global inactivation (GLOB-D2KO mice) reportedly leads to skeletal muscle hypothyroidism and impaired differentiation. Here floxed Dio2 mice were crossed with mice expressing Cre-recombinase under the myosin light chain 1f (cre-MLC) to disrupt D2 expression in the late developmental stages of skeletal myocytes (SKM-D2KO). This led to a loss of approximately 50% in D2 activity in neonatal and adult SKM-D2KO skeletal muscle and about 75% in isolated SKM-D2KO myocytes. To test the impact of Dio2 disruption, we measured soleus T3 content and found it to be normal. We also looked at the expression of T3-responsive genes in skeletal muscle, ie, myosin heavy chain I, α-actin, myosin light chain, tropomyosin, and serca 1 and 2, which was preserved in neonatal SKM-D2KO hindlimb muscles, at a time that coincides with a peak of D2 activity in control animals. In adult soleus the baseline level of D2 activity was about 6-fold lower, and in the SKM-D2KO soleus, the expression of only one of five T3-responsive genes was reduced. Despite this, adult SKM-D2KO animals performed indistinguishably from controls on a treadmill test, running for approximately 16 minutes and reached a speed of about 23 m/min; muscle strength was about 0.3 mN/m·g body weight in SKM-D2KO and control ankle muscles. In conclusion, there are multiple sources of D2 in the mouse SKM, and its role is limited in postnatal skeletal muscle fibers
Coordination of hypothalamic and pituitary T3 production regulates TSH expression
Type II deiodinase (D2) activates thyroid hormone by converting thyroxine (T4) to 3,5,3'-triiodothyronine (T3). This allows plasma T4 to signal a negative feedback loop that inhibits production of thyrotropin-releasing hormone (TRH) in the mediobasal hypothalamus (MBH) and thyroid-stimulating hormone (TSH) in the pituitary. To determine the relative contributions of these D2 pathways in the feedback loop, we developed 2 mouse strains with pituitary- and astrocyte-specific D2 knockdown (pit-D2 KO and astro-D2 KO mice, respectively). The pit-D2 KO mice had normal serum T3 and were systemically euthyroid, but exhibited an approximately 3-fold elevation in serum TSH levels and a 40% reduction in biological activity. This was the result of elevated serum T4 that increased D2-mediated T3 production in the MBH, thus decreasing Trh mRNA. That tanycytes, not astrocytes, are the cells within the MBH that mediate T4-to-T3 conversion was defined by studies using the astro-D2 KO mice. Despite near-complete loss of brain D2, tanycyte D2 was preserved in astro-D2 KO mice at levels that were sufficient to maintain both the T4-dependent negative feedback loop and thyroid economy. Taken together, these data demonstrated that the hypothalamic-thyroid axis is wired to maintain normal plasma T3 levels, which is achieved through coordination of T4-to-T3 conversion between thyrotrophs and tanycytes
Differences in hypothalamic type 2 deiodinase ubiquitination explain localized sensitivity to thyroxine
The current treatment for patients with hypothyroidism is levothyroxine (L-T4) along with normalization of serum thyroid-stimulating hormone (TSH). However, normalization of serum TSH with L-T4 monotherapy results in relatively low serum 3,5,3′-triiodothyronine (T3) and high serum thyroxine/T3 (T4/T3) ratio. In the hypothalamus-pituitary dyad as well as the rest of the brain, the majority of T3 present is generated locally by T4 deiodination via the type 2 deiodinase (D2); this pathway is self-limited by ubiquitination of D2 by the ubiquitin ligase WSB-1. Here, we determined that tissue-specific differences in D2 ubiquitination account for the high T4/T3 serum ratio in adult thyroidectomized (Tx) rats chronically implanted with subcutaneous L-T4 pellets. While L-T4 administration decreased whole-body D2-dependent T4 conversion to T3, D2 activity in the hypothalamus was only minimally affected by L-T4. In vivo studies in mice harboring an astrocyte-specific Wsb1 deletion as well as in vitro analysis of D2 ubiquitination driven by different tissue extracts indicated that D2 ubiquitination in the hypothalamus is relatively less. As a result, in contrast to other D2-expressing tissues, the hypothalamus is wired to have increased sensitivity to T4. These studies reveal that tissue-specific differences in D2 ubiquitination are an inherent property of the TRH/TSH feedback mechanism and indicate that only constant delivery of L-T4 and L-T3 fully normalizes T3-dependent metabolic markers and gene expression profiles in Tx rats