39 research outputs found

    TORNADO1 and TORNADO2 are required for the specification of radial and circumferential pattern in the Arabidopsis root

    Get PDF
    The cell layers of the Arabidopsis primary root are arranged in a simple radial pattern. The outermost layer is the lateral root cap and lies outside the epidermis that surrounds the ground tissue. The files of epidermal and lateral root cap cells converge on a ring of initials (lateral root cap/epidermis initial) from which the epidermal and lateral root cap tissues of the seedling are derived, once root growth is initiated after germination. Each initial gives rise to a clone of epidermal cells and a clone of lateral root cap cells. These initial divisions in the epidermal/lateral root cap initial are defective in tornado1 (trn1) and trn2 plants indicating a requirement for TRN1 and TRN2 for initial cell function. Furthermore, lateral root cap cells develop in the epidermal position in trn1 and trn2 roots indicating that TRN1 and TRN2 are required for the maintenance of the radial pattern of cell specification in the root. The death of these ectopic lateral root cap cells in the elongation zone (where lateral root cap cells normally die) results in the development of gaps in the epidermis. These observations indicate that TRN1 and TRN2 are required to maintain the distinction between the lateral root cap and epidermis and suggest that lateral root cap fate is the default state. It also suggests that TRN1 and TRN2 repress lateral root cap fate in cells in the epidermal location. Furthermore, the position-dependent pattern of root hair and non-root hair cell differentiation in the epidermis is defective in trn1 and trn2 mutants. Together these results indicate that TRN1 and TRN2 are required for the maintenance of both the radial pattern of tissue differentiation in the root and for the subsequent circumferential pattern within the epidermis

    Chromosome landing at TORNADO1 : a locus important for plant morphogenesis

    No full text

    Screening for resistance to clover rot (Sclerotinia spp.) among a diverse collection of red clover populations (Trifolium pratense L.)

    No full text
    Red clover (Trifolium pratense) is an important perennial forage crop that is widely cultivated in Europe. Clover rot remains a major disease in red clover, but resistance breeding is hampered by the lack of available sources of resistance. Moreover, little is known about the factors that influence clover rot resistance. In this paper we evaluated the variation in clover rot susceptibility among a diverse collection of 113 red clover accessions, with the aim of identifying more resistant accessions. Clover rot susceptibility was assessed with a high throughput bio-test on young plants. We found significant variation in clover rot susceptibility, within and among accessions. 'Tedi', 'Maro' and 'No 292' were the most resistant accessions. Fifteen diploid accessions were more susceptible than the average accession with the cultivar 'Nemaro' being the most susceptible. Clover rot susceptibility was not correlated with isoflavone levels from Mullaney et al. (Agronomy abstract. ASA, Madison, p 195, 2000). Cultivars were more resistant than landraces and wild accessions and tetraploid cultivars were more resistant than diploid cultivars. Besides the in-depth analysis for clover rot susceptibility, possible correlations with plant architecture and other diseases were investigated. Growth habit, branching, plant yield, flowering date and susceptibility to mildew, virus and rust diseases were investigated in a 3-year field trial. Unlike previously suggested, clover rot susceptibility was not correlated with branching or with plant yield over three years. On the other hand, late flowering accessions and accessions with erect growth habit were less susceptible to clover rot. Clover rot susceptibility was not correlated with susceptibility to rust disease (Uromyces trifolii) or viral diseases, but negatively with susceptibility to mildew (Erysiphe polygoni). Because no completely resistant accessions were found, the best way to improve clover rot resistance would be to select recurrently for resistant genotypes among diverse cultivars and landraces with lower susceptibility. Tetraploidisation of diploid populations with a higher resistance level can provide an additional level of protection

    Influence of flower and flowering characteristics on seed yield in diploid and tetraploid red clover

    No full text
    Tetraploid red clover (Trifolium pratense L.) often produces insufficient seed to be economically interesting. Numerous studies have identified poor pollination due to long corolla tubes as its cause, but other studies disagree. Therefore, we investigated seed yield, corolla tube length and flowering traits in 244 plants from five diploid and five tetraploid cultivars during 2years. Tetraploids produced fewer seeds, fewer flower heads and fewer seeds per head, but an equal number of flowers per head when compared to diploids. Although corolla tubes were longer in tetraploid than in diploid red clover (P<0.001), no correlation between corolla tube length and seed yield was detected. Therefore, the corolla tube length is likely neither the main nor only cause of low seed yield in tetraploid red clover. Instead, three putative causes for low seed yield were identified: tetraploids produced less inflorescences per plant, possessed a lower degree of determinacy and had markedly less seeds per head when compared to diploids. Possible causes for such differences include lower pollen viability and higher rates of embryo abortion

    Improving seed yield in red clover through marker assisted parentage analysis

    No full text
    Red clover (Trifolium pratense L.) is an important perennial forage crop in Europe. Unfortunately, seed production of modern cultivars is often unsatisfactory and breeding progress for higher seed yield is slow. We evaluated whether marker assisted parentage analysis could identify progeny plants with two high seed-yielding parents in a diploid selection trial. Furthermore, we studied if breeding for high seed yield could be speeded up by selecting progeny plants with two high seed-yielding parents, compared to traditional selection on the mother plant only. In this study, 111 genotypes with excellent vegetative traits from a first cycle selection trial were allowed to pollinate each other in isolation. After seed harvest, ten high seed-yielding plants were identified and their seeds were used to grow ten half-sib progeny populations, with 1,121 plants in total. Two multiplex primer sets targeting 18 SSR loci were designed and used to fingerprint parental and progeny plants. Parentage was reliably determined for 1,083 progeny plants: 135 plants were the result of a cross between two high seed-yielding parents. In a 2-year seed yield trial, the seed yield of these 135 progeny plants was compared to that of a control group of 216 progeny plants from the same ten high seed-yielding mother plants but with no selection on the male contribution, as is current practice. Compared to the control group, progeny plants with two high seed-yielding parents had significantly higher seed yields, 23.0 and 75.9 % higher in 2012 and 2013 respectively, and a significantly higher thousand seed weight, 6.6 and 5.7 % higher in 2012 and 2013 respectively. Seed yield was strongly correlated with flower abundance (r = 0.643) and plant volume (r = 0.593 in 2012 and r = 0.509 in 2013) and negatively correlated with susceptibility to mildew (r = -0.145). We conclude that breeding programs aiming at increasing seed yield in diploid red clover cultivars would strongly benefit from the integration of marker assisted parentage analysis to identify those progeny plants that are the result of a cross between two high seed-yielding plants. This goal cannot be achieved with traditional family selection where only the seed yield of the mother plant is known

    Resistance of red clover to broad spectrum of Sclerotinia trifoliorum

    Get PDF
    In this research a diversity study on different European isolates of the pathogenic fungus S. trifoliorum will be performed using mycelial compatibility grouping and AFLP. The next step is the development of a bio-test to screen red clover plants for their resistance level against clover rot. The third step in this research is evaluating different European strains for their virulence and evaluating a broad spectrum of red clover varieties for their resistance against S. trifoliorum. Over 100 varieties will be evaluated, including cultivars, landraces and wild varieties. Finally the inheritage of clover rot resistance in red clover will be evaluated by a QTL study. Sclerotinia isolates have been collected from clover fields among different European countries. Mycelial compatibility has shown a large variability within fields. The DNA extraction has been optimized. Sequencing of the ITS-region will be used to determine the exact species of every isolate. Primer combinations are currently being tested for the AFLP study. Different culture media were tested for their capacity to induce the production of multiple big sclerotia. The most optimal medium is being used to produce sclerotia from every isolate. Sclerotia are induced to apothecia formation and formed ascospores will be used to construct the bio-test

    Phenotypic assessment of variability in tillering and early development in ryegrass (Lolium spp.)

    No full text
    Tillering is enormously variable in the genus Lolium. Exploitation of tillering characteristics in breeding programs requires a systematic characterization of this trait at the between-species, within-species, and within-cultivar levels. We have analyzed tillering in forage and turf cultivars of L. perenne, forage cultivars of L. multiflorum and annual L. temulentum genotypes. The collection was also enriched with wild L. perenne populations. The tillering phenotype is investigated based on total tiller number, tiller orders, regrowth capacity after cutting, plant height and diameter. All of these traits showed great heterogeneity between and within accessions. As expected, turf grasses had the most tillers and L. temulentum the least. Regrowth after cutting was not linked to the general tillering capacity of an accession, suggesting that different genetic mechanisms control tillering and re-growth. These results, which are based on the evaluation of individual plants, provide a first set of observations for understanding tillering behavior in Lolium
    corecore