32 research outputs found

    Evolution of Excitation–Inhibition Ratio in Cortical Cultures Exposed to Hypoxia

    Get PDF
    In the core of a brain infarct, neuronal death occurs within minutes after loss of perfusion. In the penumbra, a surrounding area with some residual perfusion, neurons initially remain structurally intact, but hypoxia-induced synaptic failure impedes neuronal activity. Penumbral activity may recover or further deteriorate, reflecting cell death. Mechanisms leading to either outcome remain ill-understood, but may involve changes in the excitation to inhibition (E/I) ratio. The E/I ratio is determined by structural (relative densities of excitatory and inhibitory synapses) and functional factors (synaptic strengths). Clinical studies demonstrated excitability alterations in regions surrounding the infarct core. These may be related to structural E/I changes, but the effects of hypoxia /ischemia on structural connectivity have not yet been investigated, and the role of structural connectivity changes in excitability alterations remains unclear. We investigated the evolution of the structural E/I ratio and associated network excitability in cortical cultures exposed to severe hypoxia of varying duration. 6–12 h of hypoxia reduced the total synaptic density. In particular, the inhibitory synaptic density dropped significantly, resulting in an elevated E/I ratio. Initially, this does not lead to increased excitability due to hypoxia-induced synaptic failure. Increased excitability becomes apparent upon reoxygenation after 6 or 12 h, but not after 24 h. After 24 h of hypoxia, structural patterns of vesicular glutamate stainings change. This possibly reflects disassembly of excitatory synapses, and may account for the irreversible reduction of activity and stimulus responses seen after 24 h

    Growth Hormone Receptor Regulation in Cancer and Chronic Diseases

    Get PDF
    The GHR signaling pathway plays important roles in growth, metabolism, cell cycle control, immunity, homeostatic processes, and chemoresistance via both the JAK/STAT and the SRC pathways. Dysregulation of GHR signaling is associated with various diseases and chronic conditions such as acromegaly, cancer, aging, metabolic disease, fibroses, inflammation and autoimmunity. Numerous studies entailing the GHR signaling pathway have been conducted for various cancers. Diverse factors mediate the up- or down-regulation of GHR signaling through post-translational modifications. Of the numerous modifications, ubiquitination and deubiquitination are prominent events. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and induces proteasomal degradation or starts the sequence of events that leads to endocytosis and lysosomal degradation. In this review, we discuss the role of first line effectors that act directly on the GHR at the cell surface including ADAM17, JAK2, SRC family member Lyn, Ubc13/CHIP, proteasome, βTrCP, CK2, STAT5b, and SOCS2. Activity of all, except JAK2, Lyn and STAT5b, counteract GHR signaling. Loss of their function increases the GH-induced signaling in favor of aging and certain chronic diseases, exempli

    Evolution of excitation–Inhibition ratio in cortical cultures exposed to hypoxia

    Get PDF
    In the core of a brain infarct, neuronal death occurs within minutes after loss of perfusion. In the penumbra, a surrounding area with some residual perfusion, neurons initially remain structurally intact, but hypoxia-induced synaptic failure impedes neuronal activity. Penumbral activity may recover or further deteriorate, reflecting cell death. Mechanisms leading to either outcome remain ill-understood, but may involve changes in the excitation to inhibition (E/I) ratio. The E/I ratio is determined by structural (relative densities of excitatory and inhibitory synapses) and functional factors (synaptic strengths). Clinical studies demonstrated excitability alterations in regions surrounding the infarct core. These may be related to structural E/I changes, but the effects of hypoxia/ischemia on structural connectivity have not yet been investigated, and the role of structural connectivity changes in excitability alterations remains unclear. We investigated the evolution of the structural E/I ratio and associated network excitability in cortical cultures exposed to severe hypoxia of varying duration. 6–12 h of hypoxia reduced the total synaptic density. In particular, the inhibitory synaptic density dropped significantly, resulting in an elevated E/I ratio. Initially, this does not lead to increased excitability due to hypoxia-induced synaptic failure. Increased excitability becomes apparent upon reoxygenation after 6 or 12 h, but not after 24 h. After 24 h of hypoxia, structural patterns of vesicular glutamate stainings change. This possibly reflects disassembly of excitatory synapses, and may account for the irreversible reduction of activity and stimulus responses seen after 24 h

    Consolidation of memory traces in cultured cortical networks requires low cholinergic tone, synchronized activity and high network excitability

    No full text
    In systems consolidation, encoded memories are replayed by the hippocampus during slow-wave sleep (SWS), and permanently stored in the neocortex. Declarative memory consolidation is believed to benefit from the oscillatory rhythms and low cholinergic tone observed in this sleep stage, but underlying mechanisms remain unclear. To clarify the role of cholinergic modulation and synchronized activity in memory consolidation, we applied repeated electrical stimulation in mature cultures of dissociated rat cortical neurons with high or low cholinergic tone, mimicking the cue replay observed during systems consolidation under distinct cholinergic concentrations. In the absence of cholinergic input, these cultures display activity patterns hallmarked by network bursts, synchronized events reminiscent of the low frequency oscillations observed during SWS. They display stable activity and connectivity, which mutually interact and achieve an equilibrium. Electrical stimulation reforms the equilibrium to include the stimulus response, a phenomenon interpreted as memory trace formation. Without cholinergic input, activity was burst-dominated. First application of a stimulus induced significant connectivity changes, while subsequent repetition no longer affected connectivity. Presenting a second stimulus at a different electrode had the same effect, whereas returning to the initial stimuli did not induce further connectivity alterations, indicating that the second stimulus did not erase the 'memory trace' of the first. Distinctively, cultures with high cholinergic tone displayed reduced network excitability and dispersed firing, and electrical stimulation did not induce significant connectivity changes. We conclude that low cholinergic tone facilitates memory formation and consolidation, possibly through enhanced network excitability. Network bursts or SWS oscillations may merely reflect high network excitability
    corecore