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The GHR signaling pathway plays important roles in growth, metabolism, cell cycle
control, immunity, homeostatic processes, and chemoresistance via both the JAK/STAT
and the SRC pathways. Dysregulation of GHR signaling is associated with various
diseases and chronic conditions such as acromegaly, cancer, aging, metabolic
disease, fibroses, inflammation and autoimmunity. Numerous studies entailing the GHR
signaling pathway have been conducted for various cancers. Diverse factors mediate the
up- or down-regulation of GHR signaling through post-translational modifications. Of the
numerous modifications, ubiquitination and deubiquitination are prominent events.
Ubiquitination by E3 ligase attaches ubiquitins to target proteins and induces
proteasomal degradation or starts the sequence of events that leads to endocytosis
and lysosomal degradation. In this review, we discuss the role of first line effectors that act
directly on the GHR at the cell surface including ADAM17, JAK2, SRC family member Lyn,
Ubc13/CHIP, proteasome, bTrCP, CK2, STAT5b, and SOCS2. Activity of all, except
JAK2, Lyn and STAT5b, counteract GHR signaling. Loss of their function increases the
GH-induced signaling in favor of aging and certain chronic diseases, exemplified by
increased lung cancer risk in case of a mutation in the SOCS2-GHR interaction site.
Insight in their roles in GHR signaling can be applied for cancer and other
therapeutic strategies.

Keywords: aging, cancer, ubiquitin, endocytosis, GH/IGF-1 axis, GH sensitivity
INTRODUCTION

In 1989 with a background of posttranslational modifications and intracellular transport of
membrane glycoproteins our lab decided to focus on studying the role of ubiquitination in
membrane trafficking. Knowledge on the role of ubiquitination as a major regulator of cell
functions had just started to emerge (1). To address the question of whether ubiquitination and
membrane trafficking are connected processes, we sought a model membrane protein to focus on.
Some evidence suggested that the growth hormone receptor (GHR), isolated from rabbit liver, is
n.org November 2020 | Volume 11 | Article 5975731
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ubiquitinated (2). We choose this as our model and very soon, it
became clear that the two fields were indeed connected (3). Now,
we know that both the ubiquitin system and the GHR are
crucially important for the regulation of cellular life and
metabolism. The state-of-the-art of both fields has been
described in excellent recent reviews (4–11). In this review we
will connect both systems.

Loss of the GHR is not lethal, but results in sub-optimal
health, short stature, decreased bone mineral density, decreased
muscle strength, thin skin and hair, increased adiposity, and
hepatic steatosis. Interestingly, people with non-functional GH
signaling have very low plasma insulin growth factor 1 (IGF-1)
concentrations, are highly resistant to cancer and diabetes type 2
and seem to have a slow cognitive decline (12, 13). GHR, whose
function is more a modulator of cellular processes, may
deteriorate healthy aging and act as an important stimulator of
carcinogenesis. Our focus will therefore be on the mechanisms
involved in the regulation of this important receptor, wherein
ubiquitination and phosphorylation enzymes play major parts,
and on the impact of these in health and disease.
THE GROWTH HORMONE RECEPTOR

The Prototype Cytokine Receptor
GHR is a single membrane spanning protein of 638 amino acids,
isolated for the first time from rabbit liver (14). Cloning from
several species revealed a strong sequence homology (15). The
human GHR is composed by 9 exons (16) encoding a cleavable
amino acid signal peptide of 18 (exon 2), an extracellular domain
of 246 (exon 3 to 7), a transmembrane domain of 24 (exon 8),
and an intracellular domain of 350 residues (exon 9 and 10).
GHR belongs to the class 1 superfamily of cytokine receptors,
which includes 27 ligands and 34 human type I cytokine
receptors (17). The GHR was the first member of the family to
be characterized (2) and is expressed in most cells of the
human body.

The class 1 cytokine receptors share many features. In the
extracellular domain they contain conserved cysteine residues
and a WSxWS motif (18). In the case of GHR, this motif is
different, although homologous, YGEFS. Alteration of the
sequence disrupts ligand binding and receptor signaling (19).
Despite the limited amino acid homology, the structures of GHR,
EPOR and PRLR are similar, consisting of two fibronectin- (FN)
type 3 domains (b-sandwich composed of seven b strands). In
GHR the N-terminal domain is composed of amino acids 19–141
and the C-terminal composed of amino acids 146–264, separated
by a four-amino acid hinge region (20). The GHR extracellular
domain contains 3 disulfide bridges, formed by 6 of its 7 cysteine
residues (Figure 1) (23). The intracellular domain contains two
conserved membrane-proximal conserved sequences, referred to
as box1 and box2, equivalent to the UbE/TPR motif, with
functions in JAK2 binding and GHR endocytosis, respectively.
Additionally, a conserved DSGxxS degradation motif is present
downstream of box2, whose function is explained later in
this review.
Frontiers in Endocrinology | www.frontiersin.org 2
GHR Life Cycle
While being translated on ribosomes, GHR is inserted in the
endoplasmic reticulum (ER) membrane due the presence of the
signal peptide (Figure 2). In the ER, the disulfide bonds are formed
and GHR dimerizes (29). GHR is glycosylated with high mannose
oligosaccharides important for the process of quality control in the
ER. When correctly folded, higher order (presumably tetrameric)
complexes assemble, and GHR continues its route in to the Golgi
apparatus (27). In the Golgi, the high mannose oligosaccharides of
GHR are processed into complex oligosaccharides.

In 2003, we identified both SGTA and BAG6 as binding
partners for the GHR (30, 31). The binding depends on an intact
UbE/TPR motif, similar as for CHIP and bTrCP. Also
pentatricopeptide motif-containing proteins like LRP130 were
identified (30). The binding was lost if F345 was mutated. Bag6/
Bat3 localized to the nucleus, the Golgi complex and to
mitochondria. Inhibition of protein synthesis as well as UV-
treatment resulted in a reduction of Bag6 to mitochondria.
According to current insight Bag6 can bind to both precursor
and mature GHR via SGTA and Ubl4a (32–34). Silencing of
UBL4 had no effect on GHR function at the cell surface and its
endocytosis (35). Most likely the SGTA/Bag6 complex plays a
role in GHR dimerization, and multimerization at the
endoplasmic reticulum and in the Golgi complex (27, 36).

After this step, the GHRs traffic to the cell surface (Figure 2).
Unlike most growth factor receptors, the GHR is continuously
synthesized and degraded with a half-life of 30-60 min (37–39).
GHR is constitutively endocytosed independently of GH binding
(39, 40). GH binding at the cell surface initiates signaling, and
accelerates endocytosis of the GH-GHR complex (41, 42). GHR is
sorted into the multivesicular bodies (MVB), and eventually
degraded in the lysosome (43). Additionally, when at the cell
surface, GHRs can be cleaved by the metalloprotease tumor
necrosis factor-a-converting enzyme (TACE, ADAM17), a
process called shedding (44, 45). The cleaved extracellular
domain circulates in the blood and is referred to as growth
hormone binding protein (GHBP); the intracellular part is
endocytosed and degraded. GHBP levels in the blood have been
used as an indication of the amounts of GHR in the cells (46).
When GH is bound to GHR or if a tri-peptide (E260–D262) is
deleted or mutated, shedding is inhibited (39, 47, 48). In the
bloodstream, GHBPmay antagonize GH actions by competing for
its binding with GHR at the cell surface (49). Alternatively, the
GH-GHBP complex may increase the bioavailability of GH in the
circulation. Another function of the shedding process is
downregulation of the responsiveness of the cells to GH. The
availability for GH at the cells surface is determined by the rate of
GHR endocytosis (75%), the rate of shedding (10%), and other
(unknown) mechanisms (15%) (50). Control of GHR endocytosis
is crucially important. The high turnover rate allows cells to
quickly respond to stresses and changing metabolic conditions.

Both GHR and its kinase, JAK2, can translocate to the nucleus.
The JAK2 transport can be facilitated by the sumoylationmachinery
(24).Under certain conditions at defined cell cycle- regulated times
in proliferative cells, activated GHR escapes via the cytoplasm to the
nucleus by the importin- a/b mediated classical import pathway.
November 2020 | Volume 11 | Article 597573
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This process requires interaction with the nuclear localization
signal-containing protein Co-activator activator (CoAA). Through
its N-terminal domain nuclear GHR can act as a transcriptional
activator in conjunction with CoAA to initiate transcription of a
subset of target genes to regulate cell cycle progression. Most likely,
the nuclear GHR together with CoAA increases the proliferative
action of GH (25, 26). Details as whether dimeric, phosphorylated
GHR, or whether JAK2, or GH are needed, are currently lacking.
GROWTH HORMONE PHYSIOLOGY

GH Family and Structure
Growth Hormone (GH), also known as somatotropin or
somatotropic hormone, is a peptide hormone produced in the
Frontiers in Endocrinology | www.frontiersin.org 3
anterior pituitary gland which promotes cell division, regeneration
and growth (6). Phylogenetically, GH is an ancestral hormone that
has been found in the pituitary of primitive vertebrates, such as the
jawless sea lamprey fish (51). In primates, GH is part of a family of
highly similar genes consisting of GH1 which is mainly expressed in
the pituitary, a placental GH variant gene known as GH2, and three
placental lactogens also known as chorionic somatomammotropin
genes (CSH1 and CSH2) and chorionic somatomammotropin-like
gene (CSHL1). Several GH isoforms have been identified, but in
humans the majority of the circulating GH is the 22,000 GH1 form
from the pituitary gland (52, 53). Some extra-pituitary tissues (e.g.
neural, immune, reproductive, digestive, respiratory systems among
others) have also been found to produce GH (54). Thus, GH and
also PRL expression is widely spread inmany tissues throughout the
body where it has autocrine or paracrine functions and may play a
FIGURE 1 | Schematic representation of the GHR. In this review we use the notation of the human GHR protein (GenBank: AAA52555). The GHR consists of an
extracellular domain of 246 amino acids, a transmembrane domain (TMD) of 24 residues, and a cytoplasmic region of 350 amino acids. The extracellular domain
contains 5 potential glycosylation sites (N), and seven cysteine residues, from which 6 form disulfide bonds. The YGEFS domain is located at the C-terminal part of
the extracellular domain. The intracellular domain contains 9 tyrosine residues that can be phosphorylated upon receptor activation by GH. E260-D262 are involved
in ADAM17 shedding activity, Box1 is responsible for JAK2 binding, the membrane-proximal 150 amino acids contain the SRC (Lyn) binding site; UbE/TPR and
DSGxxS are for GHR internalization and degradation, TP495AG serves as SOCS2 binding site (21), and Y627F causes constitutive JAK2 activation (22).
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role in various diseases. Autocrine GH may have an even greater
role in cancer development than endocrine GH (55). In mammary
tissue GH1 expression has been found to be regulated by
progesterone (56–58). GH belongs to the same family as prolactin
(59), and in primates GH binds also to the PRLR, which presumably
implicates all PRLR-mediated actions including mammary gland
differentiation and lactation. Two disulfide bounds are necessary for
its biological activity (60). Before closure of the growth plates,
recombinant GH can be given to promote growth in children
with short statue (61).

GH Secretion and Availability
GH is released from the somatotropic cells in the anterior
pituitary in a pulsatile manner (Figure 3). In man, GH is
secreted episodically with a major surge at the onset of the
slow-wave sleep, and less pronounced secretory episodes a few
hours after meals (62–64). The pulsatility of GH secretion has a
major impact on the pattern of GH-induced hepatic gene
Frontiers in Endocrinology | www.frontiersin.org 4
expression (65–67). Sexually-dimorphic patterns of genes
manifest themselves in the liver through the pulsatile nuclear
and DNA occupancy of STAT5b in males, while In females a
more continuous pattern leads to dramatic differences in gene
expression (68–70). Pulses are regulated primarily by the
interplay of hypothalamic hormones: a stimulatory GH-
releasing hormone (GHRH) and an inhibitory hormone,
somatostatin (SS). These factors act via their respective
receptors, expressed at the cell surface of the somatotropic
cells. In addition, other peptides, called secretagogues (GHS),
were identified to regulate GH secretion, such as GH releasing
peptides (GHRP) originating from the brain (71), and Ghrelin,
produced by stomach tissue (72). Additionally, insulin-like
growth factors (IGFs), of which the transcription depends on
GH/STAT5b signaling, are able to inhibit GH release in a
negative feedback loop (73). Expression and release of GH are
mainly regulated by the transcription factor Pit-1, which has
additional functions in the differentiation and maintenance of
FIGURE 2 | Life cycle of the GHR. GHR is synthesized in the endoplasmic-reticulum (ER) where it undergoes N-glycosylation and dimerization. The small glutamine-
rich tetratricopeptide repeat-containing protein SGTA together with Large proline-rich protein BAG6 (or BCL2-associated athanogene 6), SGTA/BAG6, probably act
as chaperone in GHR complex formation toward the Golgi complex. After complex glycosylation in the Golgi the GHR arrives at the plasma membrane within 30 min.
With no GH present, the GHR endocytoses via coated pits catalyzed by bTrCP (on DSGxxS motif, Figure 1), Ubc13/CHIP, and the proteasome, within 30 min after
arrival. Alternatively, the GH binding domain (GHBP) is shedded into the blood by the action of ADAM17. If GH binds to the GHR, signal transduction is initiated via
JAK2, Lyn, and CK2; in addition, SOCS2 is recruited to the degron sequence TP495AGS, downstream of the STAT5b-interacting pY487. The activated GHR uses
the same ubiquitination machinery but a different motif (UbE/TPR) for bTrCP binding and endocytosis. This shortens the residence time to 5-10 min, as explained
below and in Figure 5. The endocytosed GHRs are then transported through endosomes, selected by the ESCRT-0 complexes at the multivesicular bodies (MVB)
and degraded in the lysosomes. The CK2 involvement is hypothetical. Upon GH binding, JAK2 and Lyn phosphorylate downstream effectors. Phosphorylated STATs
translocate to the nucleus and activate many genes. Both GHRs and JAK2 can be translocated to the nucleus (24–26). High-order functional GH-GHR complexes
may occur that upon activation are phosphorylated and act as signaling platforms (27, 28). If GH and GHR are expressed in the same cell, they bind in the ER and
the signaling starts from the Golgi complex.
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somatotropic cells (74, 75). GH secretion is also affected by
other factors such as physical stress, body composition,
metabolic status and others (Figure 3). For instance, during
fasting and certain conditions of physical stress, GH secretion is
increased, and excess of glucose or lipid intermediates inhibits
GH release in healthy man (63, 76–78). After maximal GH
secretion at puberty (79), adulthood is associated with its
gradual decline (80). Besides the tight regulation of GH
secretion, the availability of GH is also influenced by its
clearance by the kidneys and by internalization through its
receptor. During pregnancy, the pulsatile GH secretion is
completely abolished due to the placental GH2 secretion
which evokes elevated plasma IGF-1 concentrations inhibiting
pituitary GH1 release by feedback inhibition. Because of this,
insulin-resistance may develop eventually leading to pregnancy
diabetes (81).
GHR ACTIVATION, SIGNALING, AND
DESENSITIZATION

GH signaling not only depends on the amounts of GH in
circulation, but also on the levels of GHR at the cell surface.
The responsiveness (sensitivity) of the cells to GH is dynamically
regulated, reflecting a balance of receptor endocytosis/
degradation, and transport of newly synthesized receptors to
the plasma membrane (50).
Frontiers in Endocrinology | www.frontiersin.org 5
If GH and GHR are synthesized in the same cell, autocrine
signaling occurs. Binding and complex formation takes place in
the ER, but signaling starts only in the Golgi complex (27, 82). As
it is a continuous process, the kinetics of downstream signaling
certainly differ from the endocrine mode. While for the latter,
JAK2-induced phosphorylation is rapidly counteracted by SOCS
activity and endocytosis, the autocrine signaling occurs
continuously from inside and there is no information about
the exact role of the different factors discussed in this review.
Most likely, cells that synthesize GH, already carry GH-GHR
complexes at the cell surface and react differently upon GH from
outside the cell.

Receptor Activation Mechanisms
The class 1 cytokine receptors do not have intrinsic kinase
activity (83). This role is mediated by JAK2 and the SRC
kinase family member, Lyn, that associate with sequences in
the cytosolic tail: box1 for JAK2 (84), and the membrane
proximal 150 residues of the cytoplasmic domain for Lyn (85).
In this review we choose Lyn as a member of the SRC family, but
also c-Src and Fyn may be involved (86).

The first step in GH action is its binding to the GHR. The
crystal structure of the extracellular domain of GHR bound to
GH revealed that one GH molecule binds with two asymmetric
binding sites two molecules of GHR (20) (Figure 4). For a long
time, it was thought that GH binding to one GHR monomer at
the plasma membrane recruits the second monomer of GHR to
FIGURE 3 | Factors that stimulate and suppress GH secretion under physiological conditions. Several factors influence GH secretion including stress, nutrition, and
exercise among others. However, two factors are the main regulators: GH releasing Hormone (GHRH) and somatostatin (SS), which stimulate and inhibit GH
secretion, respectively. Ghrelin produced in the stomach also stimulates GH release. GH stimulates the synthesis of IGF-1 by the liver, and in other peripheral tissues.
Both GH and IGF-1 are involved in negative feedback loops. High GH levels inhibit its own secretion by inhibiting the release of GHRH. High blood levels of IGF-1
lead to decreased secretion of GH by direct suppression in the pituitary and by stimulating the release of SS.
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its second binding site. JAK2 activation was proposed to occur
due to GHR dimerization itself. However, subsequent studies
disproved this model. Studies by Gent and collaborators showed
that GHR dimerizes in the ER, independently of GH, and travels
to the cell surface as a pre-formed dimer (29). Subsequently,
work by the group of Waters suggested that a change in
conformation, induced by GH, rather than GHR dimerization,
is responsible for GHR activation. In this study, the comparison
of the crystal structure of the extracellular domain of GHR alone
and the previous structure of GH-bound GHR revealed
differences in conformation (87). Based on this knowledge, the
current model for GHR activation proposes that GH binding to
the GHR dimer causes a change in conformation in the
extracellular binding domain This structural change causes the
receptor transmembrane domain to change from a parallel to a
left-handed crossover interaction. This structural transition leads
to a separation of the intracellular domain, at least to the Box1–
Box2 motif, dissociates the JAK2 kinase/pseudokinase trans-
interaction and brings the JAK2 kinase domains in proximity,
allowing trans-phosphorylation and activation (88, 89). As
described for many cytokine receptors, high-order functional
GH-GHR complexes of 900,000 Mr occur that upon activation
are phosphorylated and act as signaling platforms as identified by
native polyacrylamide gel electrophoresis (27, 28, 90).

The phosphorylation of specific tyrosine residues, brought about
by JAK2 and Lyn, has extensively been studied as intermediaries for
recruiting downstream signaling effectors (91). Herewith in
agreement, we confirmed that tyrosine residues 487, 534, and 627,
but not residue 566, are most important for GHR and STAT5b
phosphorylation. In addition, we showed that the GHR(Y627F)
Frontiers in Endocrinology | www.frontiersin.org 6
mutation constitutively (independent of GH binding) activates
JAK2 and downstream effectors (92).

JAK2 Activation
JAK2 is composed of four major domains: a N-terminal FERM (4.1
protein, ezrin, radixin, and moesin) domain, followed by a SH2 (Src
homology 2) domain, pseudokinase and kinase domains. The
binding to the box1 of GHR occurs through the FERM domain
(93). Normally JAK2 is held in an inactive conformation, where the
kinase and pseudokinase domain interact with each other (94). The
activation of JAK2 requires that two catalytic domains are brought
in close proximity. This was concluded after realizing that often in
human leukemia there is oligomerization of JAK2 molecules which
renders them constitutively active; this aggregation is due to the
occurrence of a genetic fusion between the JAK2 catalytic domain
and the oncogenic transcription factor TEL (95). Analysis of other
mutation also contributed to the understanding of JAK2 physiology.
The mutation V617A, which turns JAK2 into a constitutively active
state, is found in patients with myeloproliferative disorders (96).
This mutation probably disrupts the inhibitory interaction between
the pseudokinase and kinase domain (97). Following mutational
analysis, the SH2-pseudokinase domain linker turned out to be
important for JAK2 activation (98). JAK2 activation results in the
phosphorylation of multiple tyrosines. Several of these have been
identified as important in the regulation of JAK2 function. For
example, phosphorylation at tyrosine 1,007 is thought to expose the
substrate and/or ATP binding sites (99), and phosphorylation of
tyrosine 119 is thought to promote JAK2 dissociation from its
receptor (100). Phosphorylation of tyrosine 813 appears to enhance
JAK2 activity (101), whereas phosphorylation of tyrosine 221
FIGURE 4 | GHR activation and signaling. The binding of the two asymmetric binding sites of one GH molecule to the GHR dimer causes its rotation and
subsequent activation of downstream signaling pathways, and ultimately specific gene transcription. The activation of different signaling pathways accounts for the
multitude of GH functions. JAK2 binds to box1, while the SRC family member (Lyn) binding is to the membrane proximal 150 residues (85). Lyn activates PLCg,
which leads to an increase in the cytoplasmic calcium ion concentration. This process results in RAS activation and initiation of the ERK1/2 signaling pathway. In the
scheme also molecules involved in signal termination (PTPs, SOCS and PIAS) are indicated. In Figure 7 the physiology and pathophysiology are further detailed.
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decreases it (102). The importance of many of the JAK2 tyrosines is
related to their roles in recruiting ancillary molecules needed for
signaling propagation or signal termination.

Unexpectedly, the JAK/STAT signaling pathway is
downregulated at febrile temperatures (103). JAK2 protein
levels rapidly decrease in cells exposed to thermal stress, while
its synthesis remains normal. The analogy of these findings in a
variety of cell lines, as well as in PBMCs isolated from human
blood, indicate the universal validity of this effect. Although
JAK2 is a stable protein, it is degraded in a ubiquitin-dependent
manner via the ubiquitin proteasome pathway (104). The
significance of this process was illustrated in mouse 3T3 cells
that showed a decreased GH response at 40°C. JAK2 underwent
aggregation in an irreversible manner. Interestingly, kinase-
inactive JAK2 did not show aggregation, although the effect of
degradation in the cytoplasm at elevated temperatures was
conserved. The findings predict that elevated body
temperatures lower the responsiveness of cytokine receptors.

SRC Activation
For a long time JAK2 has been regarded as the only kinase activated
directly via the GHR. However, recent data, indicating that not all
the GH signaling events rely on JAK2, brought controversy to the
field. In particular, the activation of Lyn (SRC family kinase
member) can occur independently of JAK2. First evidence
came from a study by Zhu et al, who showed this by using
pharmacological inhibitors and kinase inactive proteins (105).
Additional evidence came from Rowlinson and co-workers,
who reported that interfering with the GH-induced GHR
conformational change affects JAK2 and Lyn activation differently
(85). Activation of STAT5b by GH seems to require only JAK2,
while activation of the small GTPases RalA, RalB, Rap1 and Rap2 by
GH requires both Lyn and JAK2 (105). Lyn activation by GH was
shown to activate MAPKs, also referred to as extracellular signal-
regulated kinase 1 and 2 (ERK1 and ERK2), through the
phospholipase Cg-Ras pathway, signaling that might promote
oncogenesis (85). Genes exclusively regulated by Lyn include
genes involved in mRNA transcription and metabolism, including
the GHR itself: the basal GHR expression level via Lyn is 4.8-fold
higher, comparing GHR Box1-/- vs. GHR-/- (106). GHR signaling
via this pathway induces also HLA-G, a powerful
immunosuppressive protein for NK cells and macrophages. GH-
enhanced immunosuppression in tumors might evade immune
attack. On the other hand, it might be used to stop excessive
inflammation after partial hepatectomy allowing liver regeneration
and survival, Figs. 4 and 7 (107). For 3T3-F442A preadipocytes and
H4IIE hepatoma cells it has been shown that relative levels of JAK2
and SRC family kinase in any particular cell might determine which
kinase is the major signaling element, with JAK2 predominating in
most cases (108). Barclay and co-workers showed that targeted
mutation in the box1 of GHR in mice, although abrogating JAK2
activation, did not decrease the hepatic activation of MAPK via Lyn
(106). The importance of this pathway came from studies with exon
3-deleted GHR, which results in the deletion of 22 amino acids in
the extracellular domain of the GHR. Males with this genotype
exhibit reduced basal but enhanced ERK signaling after GH
Frontiers in Endocrinology | www.frontiersin.org 7
stimulation. Exon 3-deleted GHR individuals showed lower serum
IGF-1 levels, and were found to be of higher stature with extended
lifespan (10 years) (109).

Signaling Pathways of GH
The main pathways activated by GH are: the signal transducer
and activator of transcription (STAT) pathway, the mitogen-
activated protein kinase (MAPK) pathway, and the
phosphoinositide-3 kinase (PI3K) pathway (Figure 4). The
extent by which each pathway is activated depends on the cell
types, related to differences in relative expression levels of the
components of each pathway.

The STAT Pathway
STATs are latent transcription factors that upon activation by
certain hormones or cytokines undergo tyrosine phosphorylation
in the cytoplasm, dimerize via phosphotyrosine-SH2 interactions,
and translocate into the nucleus where they activate transcription of
specific genes (110). In mammals seven members of STAT have
been identified with molecular weights ranging from 95 to 111,000
Mr (111). GH stimulation creates STATs binding sites in the GHR-
JAK2 complex. The activation of STAT5b is critical for many of the
GH biological functions, including metabolic changes, body growth
and sex-dependent liver gene regulation (112, 113). Sex-biased
genetic programs in liver metabolism and liver fibrosis are
controlled by EZH1 and EZH2 downstream of GH-activated
STAT5b (114). STATs 1 and 3 also become activated in response
to GH (112), but their importance is still unclear.

STAT5b binds to the promoter elements of the IGF-1 gene,
regulating its transcription in a GH-dependent manner (115,
116). A mutation in STAT5b, affecting its GH-induced tyrosine
phosphorylation, caused severe growth retardation and
immunodeficiency in one patient (117). Since then, more
germline STAT5b missense variants with demonstrable
dominant-negative effects, associated with short stature and
mild immune dysregulation were identified in three unrelated
families (118). This reiterates the importance of STAT5b for
IGF-1 expression. STAT5b, but not STAT3, requires an intact
and tyrosine phosphorylated GHR cytoplasmic tail for full
activation (119). The key GHR tyrosines necessary for this
event were identified (120, 121).

The MAPK Pathway
The Ras/MAPK, or ERK/MAPK has also been shown to be
activated by GH. GHR phosphorylation creates docking sites for
Src homology 2 domain-containing transforming protein C
(Shc) (122). Shc gets then phosphorylated by JAK2, and binds
growth factor receptor-bound protein 2 (Grb2) which binds Son
of Sevenless (SOS), a guanine nucleotide exchange protein.
Subsequently, Ras, Raf, mitogen-activated protein kinase/
extracellular-regulated protein kinase (MEK), and ultimately
MAPKs are sequentially activated (123). Phosphorylated
MAPKs translocate to the nucleus where they transactivate
transcription factors, and change gene expression to promote
growth differentiation or mitosis. Data suggest that GH-
dependent activation of the Ras/MEK/MAPK pathway
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contribute to GH-stimulated c-fos expression through serum
response element (SRE). It remains controversial whether and
how MAPK activation affects GH-induced proliferation and
anti-apoptosis (124). As explained above, the activation of
MAPKs may occur in a Lyn-dependent, JAK2 independent
way. As STATs are also serine phosphorylated for full activity
(125), it was suggested that this is mediated by MAPK
pathway (126).

Some evidence suggests that GH signaling via MAPK
pathway may engage in cross-talk with signaling pathways
induced by other stimuli. Yamauchi and co-workers propose
an interesting mechanism by which GH activates MAPK through
stimulating the phosphorylation of a Grb2 binding site in the
epidermal growth factor (EGF) receptor (127). Additionally,
studies by Kim and co-workers show that GH stimulation
alters the phosphorylation status of ErbB-2, a tyrosine kinase
growth factor receptor member of the EGF receptor family, in a
MAPK dependent manner (128). GH has also been described to
activate other members of MAPK pathway, namely p38 MAP
kinase and c-Jun amino-terminal kinase (JNK) (129, 130).

The PI3K Pathway
GH has also been shown to stimulate the PI-3K pathway,
probably through tyrosyl phosphorylation of the large adaptor
proteins, the insulin receptor substrates (IRS). GH stimulates the
phosphorylation of IRS-1, -2, and -3 by JAK2, which leads to
their association with multiple signaling molecules including the
p85 subunit of PI-3 kinase (122, 131). This pathway is shared by
the insulin signaling pathway, which may justify the insulin-like
effects of acute GH stimulation under certain conditions, as
discussed above. Particularly, activation of PI-3 kinase mediates
the GH-induced increase in glucose transport, via induction of
translocation of the glucose transporter 4 (GLUT4) to the cell
surface (132), and has been suggested to mediate the ability of
GH to stimulate lipid synthesis (133, 134). Additionally, PI-3
kinase activation results in AKT activation, which has been
implicated in GH-promotion of cell survival. Activation of
AKT depends on JAK2 binding to box1 in the GHR (135).
Another kinase, p70S6K, involved in the control of cell
proliferation and differentiation was shown to be activated by
GH through PI-3 kinase and protein kinase C (PKC) (136). The
NFkB pathway has also been shown to be activated by PI3-K and
downstream AKT after GH stimulation (137).

GH Desensitization
Termination of the GHR signaling is an important mechanism for
controlling GH actions (Figure 4). Protein tyrosine phosphatases
(PTPs) are employed by the cells for negative regulation of GH
signaling, namely SH2 domain-containing protein-tyrosine
phosphatase (SHP-1), SHP-2, protein-tyrosine phosphatase
(PTP)-H1, PTP1, TC-PTP, and PT1b (138). Mice, deficient in
SHP-1, have prolonged JAK-2 phosphorylation and STAT5b
activity, which represents strong evidence for an important role
of this phosphatase in the deactivation of GH signaling (139).
There are conflicting reports concerning the physiologic
importance of SHP-2 in GHR: while Frank et al. concluded that
SHP-2 is a positive regulator (140), Stofega et al. proposed SHP-2
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as an inhibitor of GH signaling (141). GH stimulation has been
shown to trigger the phosphorylation of JAK2-associated SIRP-a,
signal regulatory protein alpha. This was suggested to promote
SHP-2 recruitment and consequent attenuation of GH signaling
(142). A study by Pasquali has identified PTP-H1, PTP1, PTP1b,
and TC-PTP as specific interactors of phosphorylated GHR (143).
PTP1b knockout mice display increased JAK2 and STAT5b
phosphorylation, while PTP-H1 knockout mice display
enhanced growth (144, 145). CD45 was shown to be a JAK2
phosphatase, being able to suppress its activity and regulate
cytokine receptor signaling (146).

Other regulators are PIAS, “protein inhibitors of the activated
STATs”, which display SUMO ligase activity. PIAS can bind STAT
proteins, and prevent their association to the DNA. Although the
majority of the PIAS interactor proteins are prone to modification
by SUMO, the exact mechanism by which PIAS influences
STAT5b function is still unclear (147). Some studies have also
implicated the adaptor protein Grb10 as regulator of GH signaling.
Grb10 interacts with GHR upon GH stimulation, and
downregulates GH signaling pathways downstream of JAK2
and independently of STAT5b (148). Work of Carter-Su and
colleagues found that SH2B-b association with JAK2 enhances its
activity (149). Thus, decrease in SH2B-b levels could contribute
for GH-signaling termination. Other cellular factors that modulate
GH sensitivity are insulin, thyroid and sex hormones, as well as
inflammatory cytokines (150, 151).

In addition to direct interference with the signaling
molecules, cells have the capacity to tune the number of GHRs
at the cell surface in several ways. As described above, the
extracellular domain of GHR can be cleaved in a process called
shedding. One of the consequences of this process is the
reduction of the number of signaling competent receptors at
the cell surface, and consequent regulation of the cell sensitivity
to GH (124). Since GH binding to GHR inhibits its shedding, this
mechanism cannot be regarded as signal terminator (152, 153).
However, the most powerful and best studied mechanism to
control GH sensitivity of cells is endocytosis. Opposite to other
type 1 cytokine receptors, GHR is endocytosed both in the
presence and absence of ligand (154, 155). Therefore, besides
regulating the responsiveness of the cells to GH, endocytosis of
GHR provides a very efficient way for GH signaling attenuation.
The next paragraph will be dedicated to the advances made in
understanding GHR endocytosis.
THE UBIQUITIN SYSTEM IN RECEPTOR
TRAFFICKING

Ubiquitin is a small molecule of 76 amino acids which C-
terminus is attached to proteins upon sequential action of
three enzymes: a ubiquitin activating enzyme (E1), a ubiquitin
conjugating enzyme (E2), and a ubiquitin protein ligase (E3).
Ubiquitin may be added as a single monomer or multiple
monomers, or as a polyubiquitin chain. The addition of
ubiquitin to target proteins covers a great variety of functions.
Endocytosis is the main way used by the cells to achieve the
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homeostatic regulation of plasma membrane protein abundance.
Once a protein is endocytosed it is either recycled back to the cell
surface or captured in the intraluminal vesicles of the MVBs, and
eventually guided to lysosomes for degradation (156).

Ubiquitination has emerged as a central mechanism
governing the subcellular trafficking of proteins, reviewed in
(7). It is critically important for the regulation of the number of
receptors and transporters at the plasma membrane. The first
evidence for a role of ubiquitin in the membrane trafficking came
from the work of Kölling and collaborators with the ABC-
transporter Step6 in yeast (157). In mammalian cells, the first
receptor reported to depend on the ubiquitination system for its
endocytosis and degradation was GHR (3). From then on, many
more receptors were shown to depend on the ubiquitin system to
be endocytosed, often in response to ligand binding (7, 158).

Ubiquitination works as an engagement tool of the proteins
with the endosomal sorting complexes required for transport
(ESCRTs) (159). In fact, ubiquitination has been reported at
several points along the endocytic pathway. Although
monoubiquitination has been regarded as a sufficient signal for
sorting, K63 linked polyubiquitin chain are now considered as
the primary sorting factor. Studies with the GAP-1 permease
indicated that monoubiquitination is sufficient for initial
internalization, but further sorting in the endosomes requires
K63-linked polyubiquitin (160). Also studies of the mammalian
TrkA and MHC class 1 proteins showed the importance of this
type of chains in their MVB sorting (161, 162). Within the
endocytic system, ubiquitin acts as an interaction module that is
recognized by a variety of ubiquitin binding domains (UBDs),
including UIM, CUE, NZF, and certain VHS and SH3 domains
present in several proteins (163). As illustrated in Figure 2, after
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endocytosis, the next step in the sorting route is the selection by
the ESCRT-0 complex, which acts at a branch point in
endosomal traffic: binding to certain cargo (like the GHR)
commits it to degradation in the lysosome, while cargo that
does not bind (like transferrin and Low Density Lipoprotein
receptors will be recycled to the plasma membrane. ESCRT-0 is
composed of HRS and STAM, both of which bearing UIM
(ubiquitin interacting motif) and VHS (Vps27, HRS and
STAM) domains, important for ubiquitin binding and cargo
recognition (164–166).

Other important components to consider in the endocytic
regulation are the deubiquitinating enzymes (DUBs), which are
specific proteinases able to remove ubiquitin moieties from
proteins. Besides the catalytic domain, DUBs contain domains
that allow them to associate with scaffolding proteins and
adaptors. The ESCRT machinery associates with at least two
DUBs: AMSH and USP8 (UBPY). In yeast, Doa4 has been
identified as an additional DUB, important for receptor
recycling. Deubiquitination of endocytosed receptors before or
after delivery into the MVBs may profoundly affect receptor
trafficking, and ultimately substrate turnover rate (167). It
remains unclear how the ubiquitinated cargo is handed from
one sorting step to the other. Models have been put forward
based on a gradient of sorting proteins containing ubiquitin
binding domains of increasing binding affinities. More
complexity can be added to this model if we consider ubiquitin
ligases such as Triad1 and DUBs along the sorting pathway,
which could perform additional chain editing (156, 168). In
Figure 5, the different controlling factors are depicted with
reference to their effects on residence time at the cell surface
and consequences of loss of function for the GH/IGF-1 axis.
FIGURE 5 | GHR controlling factors: ADAM17, JAK2, Lyn, Ubc13/CHIP, proteasome, bTrCP, STAT5b, SOCS2 and possibly CK2. Their respective bindings sites
are indicated. JAK2 and Lyn bind to the same membrane-proximal region, with overlapping substrate binding sites. Under basal conditions bTrCP binds to the
constitutively phosphorylated DSGxxS sequence. The kinases responsible for DSGxxS phosphorylation are unknown. Under conditions of GH stimulation JAK2 is
released from the receptor, and the serine 341 of the UbE motif gets phosphorylated probable by CK2. These events increase the affinity of bTrCP for the UbE motif,
reduce the role of the DSGRTS sequence, and recruit STAT5b and SOCS2 to their respective binding sites (pY containing motifs). Overall, GH stimulation shortens
the residence time at the plasma membrane and results in faster GHR endocytosis. The lower part indicates the effects of mutations and other conditions that might
impact the GH sensitivity of cells: increased GH/IGF-1 activity acts pro-aging and pro-cancer, while lower activity acts anti-aging and anti-cancer.
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Role of SCFTrCP1 in GHR Endocytosis
The SCF (SKP1-CUL1-F box protein) subfamily of E3 ligases was
originally discovered and studied in budding yeast
Saccharomyces cerevisae (Patton et al., 1998). They are the best
characterized mammalian cullin RING ubiquitin ligases. The
determination of the crystal structure of SCF complex by Zheng
and co-workers added some insights in the roles of each of its
components and the mechanistic aspects of their interlinked
actions (Zheng et al., 2002; Frescas and Pagano, 2008).

The endocytosis and degradation of GHR depends on the
ubiquitin conjugation system, as shown for the first time in a
Chinese hamster lung cell line (ts20) with a temperature-
sensitive mutation in the E1 enzyme. Whereas at the
permissive temperature the endocytosis of GHR occurred
normally, when the cells were put at non-permissive
temperature the GHRs accumulate at the cell surface (3).
Further evaluation revealed that GHR ubiquitination and
clathrin dependent-GHR endocytosis are coupled events (40, 41).
An important achievement in the mechanistic understanding of
GHR endocytosis was the discovery of the “Ubiquitin-dependent
endocytosis motif”, UbE, 340-349, which consists in the amino acid
sequence DSWVEFIELD (169). If this motif is mutated the
ubiquitination and endocytosis of GHR are strongly inhibited.
Besides this motif, there is a di-leucine motif at the position 365-
366. This motif mediates fast ubiquitin-independent, clathrin-
dependent GHR endocytosis only if the receptor is truncated at
position 367, probably due to its complete exposure in this case.
The functionality of the di-leucine motif in the context of full-
length receptor is not apparent (170). Surprisingly, a GHR
truncation (at amino acid 417), where all its lysines were
mutated to arginines, although not being ubiquitinated, was
normally endocytosed in a ubiquitin-system dependent manner.
This indicates that the ubiquitination of GHR itself is neither
needed for its endocytosis nor for its degradation (169). One
reason that justifies the importance of the UbE motif in GHR
endocytosis is its binding site for the SCFbTrCP E3 ligase (171).
The role of the UbE motif and bTrCP has been also extended
to sorting at the MVB and degradation at the lysosomes (172).
JAK2 was also identified as a stoichiometric regulator of GHR
endocytosis. Besides its role in signaling, merely binding of JAK2
to GHR is inhibitory for its endocytosis. As many cytokine
receptors are JAK2 clients, cellular levels of JAK2 play a role in
cytokine sensitivity, best illustrated by its sensitivity to febrile
temperatures (103). The model is that GHR can only be
endocytosed if JAK2 has detached from it, which was proposed
to occur after GH stimulation. It is possible that JAK2 binding/
dissociation cycles have direct effects in the ubiquitination events
mediated by SCFbTrCP, and thereby affect rate of GHR endocytosis
(92). Not surprisingly, the life cycle of JAK2 is controlled by E3
ubiquitin ligases of the CBL family as has been shown in
hematopoietic stem cells and myeloid malignancies (173).

The UbE motif works as a recruitment platform for bTrCP,
the F-box substrate recognition subunit of SCFbTrCP E3 ligase,
necessary for GHR endocytosis (171). Generally, SCFbTrCP

recognizes the classical DSGxxS motif in its substrates (174),
including receptors homologous to GHR, such as prolactin
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receptor (PRLR) (175), interferon-a receptor (IFNAR) (176),
and erythropoietin receptor (EpoR) (177). In these receptors,
bTrCP binds only upon ligand binding when the serine residues
in the DSGxxS motif are phosphorylated, which leads to their
endocytosis and signal termination. The GHR also contains a
D383SGxxS motif. This is constitutively phosphorylated, able to
bind bTrCP, and contributes to the steady state endocytosis of
the GHR (the half-life of unligated (mature) GHR is 30 min) (39,
42). Therefore, in contrast with other cytokine receptor family
members, GHR DSGxxS motif does not seem to contribute to
signal termination. This role is carried out by the UbE motif,
important for both steady state and GH-induced endocytosis (42,
92). NMR experiments demonstrated that the UbE motif is
essentially unstructured, and, together with functional mapping
of the UbE and bTrCP revealed a unique interaction model of
bTrCP with GHR-UbE (178). Since the regulation of bTrCP-
substrates interactions involves serine phosphorylation, we
evaluated the potential role of the UbE serine phosphorylation
(S341) as a modulator of UbE-bTrCP interaction. Binding
studies comparing affinities of the interaction of bTRCP to
unphosphorylated vs phosphorylated S341 peptides (Surface
plasmon resonance and pulldowns) showed 100 times increase
in binding affinity upon S341 phosphorylation. Accordingly,
125I-GH binding/internalisation assays in cell lines stably
expressing S341A or S341D (phosphomimetic) suggest that
GH stimulation triggers faster GHR endocytosis by causing
phosphorylation of S341 in the GHR UbE motif and
subsequent increase in UbE-bTrcP binding affinity (179). S341
phosphorylation might constitute a very efficient mechanism for
signal termination after GH stimulation.

The kinase responsible for S341 phosphorylation is unknown
yet. S341 is contained in a minimal consensus site for CK2
phosphorylation, which has been identified to be S-X-X-Acidic.
The acidic residue may be glutamate, aspartate, or phosphorylated
serine and tyrosine: in case of S341 this sequence is S341WVE
(180, 181). Preliminary studies on the evaluation of a potential role
for CK2 in S341 phosphorylation, by using the CK2 inhibitor
4,5,6,7-tetra-bromo-benxotriazole (TBB) (182), revealed that CK2
is a promising target. It has become apparent that the regulation of
CK2 involves regulated expression, assembly and subcellular
localization, post-translational modifications, and regulatory
interactions with molecules and proteins (183, 184).
Interestingly, there are reports of increased CK2 activation by
insulin, EGF, IGF-1 (185, 186) and TNF (187, 188). EGF-activated
ERK2 binds directly CK2a enhancing its activity (189). TNFa-
induced activation of CK2 was also related to ERK1/2 activity
(187). It is interesting to evaluate whether CK2 can be activated by
GH. Other stressors or pathways that activate ERK1/2 may result
in increased activity of CK2 towards S341 in GHR, resulting in
increased GHR endocytosis. Future studies will elucidate
this hypothesis.

The SOCS Family and GHR
The suppressor of cytokine signaling (SOCS) family of proteins
plays a very important role in the GH-signal termination. This
family is composed of eight members, and the expression of four
November 2020 | Volume 11 | Article 597573

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Strous et al. GHR Regulation in Cancer and Chronic Diseases
of them is stimulated by GH, namely SOCS1, -2, -3, and CIS
(cytokine inducible SH2-constaining protein) (138, 190).
Structurally, SOCS proteins contain a central SH2 domain and
a motif called SOCS box at their C-termini (138). The SOCS box
mediates the formation of multi-subunit ubiquitin ligases,
containing elongin BC, cullin 2 or 5 and the RING finger
proteins Rbx1 or Rbx2 (191). SOCS1 and SOCS3 contain an
additional kinase inhibitory region at their N-termini (KIR).
Different SOCS apply different mechanisms for GH signaling
downregulation. SOCS1 is thought to bind Y1007 on JAK2
activation loop, and by doing so, to inhibit JAK2 activity
through KIR (192). SOCS3, besides binding to the same
residue in JAK2 (193), also binds to phosphorylated tyrosines
in GHR. Also, SOCS2 and CIS have been shown to bind to
phosphorylated GHR, which was suggested to interfere with
STAT5b-GHR binding (194). SOCS1, and possibly SOCS2 and
SOCS3 use their ubiquitination activity to mediate GHR and
JAK2 degradation and, therefore, signal termination (21, 104,
138). A role of CIS as a stimulator of GHR internalization and
proteasomal degradation has been proposed (195). Interestingly,
there is evidence that some stimuli that reduce GH sensitivity,
such as estrogen or sepsis, do so by increasing expression of
certain SOCS proteins (196, 197). The physiological importance
of SOCS in GH signaling regulation is unclear since SOCS1-/-,
CIS-/- and liver specific SOCS3-/- are not bigger than normal
(198–200). Only SOCS2 knockout mice are larger than wild-type
(201). SOCS2 inhibits the GHR via binding to pY487 and pY595
(202, 203). SOCS may play a key role in shifting GH action from
growth-promotion to lipolysis. Two independent studies showed
that a single-nucleotide polymorphism in GHR resulting in a
P495T substitution was associated with lung cancer (204, 205).
Y595 (and Y487) were previously indicated as a binding site for
the phosphatase SHP2 (141) Recently, Chhabra and
collaborators showed a causative relation with SOCS2 binding
to the GHR in which both P495 and pY487 are required (21).
They show that GH-induced signaling increased AKT pT308
signaling significantly in GHRP495T cells. This is a strong
prognostic indicator for non-small cell lung cancer (206). In
addition, STAT3 was activated. Activated STAT3 is an important
oncogenic factor during carcinogenesis and metastasis of both
small cell lung cancer and squamous cell lung carcinoma (207).
Taken together, SOCS family members, especially SOCS2, play
an important role in the regulation of the GHR.

CHIP and GHR
In an effort to identify additional ubiquitination factors involved
in the fate of GH receptors we used a small siRNA library
targeting a selection of ubiquitination factors (35). As K63-linked
ubiquitin chains have been implied in the regulation of
membrane receptor trafficking, we search for such factors (160,
208). Silencing of the ubiquitin conjugase (E2) UBC13 came up
as a GHR-specific endocytosis factor (165, 209). Previously, pull-
down experiments showed that the UbE motif has an affinity for
tetratricopeptide repeat-containing (TPR) proteins (30). As
UBC13 can serve as E2 for a ubiquitin ligase that binds
substrates via its TPR motif we tested both (C-terminus of
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Hsp70 interacting protein) CHIP and UBC13 for endocytosis
and degradation of the GHR: both factors were required and
collaborated in GH-induced endocytosis of the GHR (209).
Using blue native electrophoresis, Sedek et al. confirmed K63-
linked proteins in large GHR-containing protein complexes
stimulated and isolated through streptavidin pull-down during
endocytosis (27).

CHIP is an E3 ubiquitin ligase that plays a pivotal role in the
protein quality control system by shifting the balance of the
folding-refolding machinery toward the degradative pathway in
order to maintain balanced proteostasis networks (33, 210–212).
CHIP is highly expressed in tissues with high metabolic activity
and protein turnover. In addition, as a regulator of growth and
metabolism, CHIP mediates monoubiquitination and
subsequent endocytic-lysosomal turnover of the insulin
receptor (INSR). CHIP deficiency results in increased INSR
levels that lead to premature aging in various organisms. The
detrimental effects of the increased INSR level are mainly due to
a PI3K/AKT signaling (213). In line with this, CHIP
ubiquitinates AKT independent of its phosphorylation state
(214). Remarkably, transcription of CHIP is also modulated in
response to changes in AKT levels (215). Similar to AKT
regulation, CHIP indirectly impacts the FOXO function on
various levels through modulation of upstream substrates of
the insulin/IGF-1 signaling pathway, a pivotal genetic program
regulating cell growth, tissue development, metabolic physiology,
and longevity of multicellular organisms (210). Thus, CHIP
integrates proteostasis and aging by regulation the turnover of
the INSR (211). In cancer the pathogenic mechanisms of CHIP
are less clear (216). Several studies on breast cancer cells have
indicated CHIP as tumor suppressor (212, 217–219).
PHYSIOLOGICAL ROLES OF GH

Promotion of Growth
The promotion of postnatal growth is a major physiological
function of GH. Initially, it was thought that GH indirectly
stimulates growth via triggering the production of IGFs, or
somatomedins, exclusively in the liver. This was called the
“somatomedin hypothesis”. This theory was challenged when
direct actions of GH on several peripheral tissues were reported
(220). In fact, liver-specific IGF-1 gene-deleted mice show
normal postnatal growth and development despite the low
levels of IGF-1 in circulation. This indicates that direct effects
of GH in target tissues (adipose tissue, bone and skeletal muscle)
are involved in growth promotion, and probably in stimulation
of local IGF-1 production (221). According to the dual effector
hypothesis of Green et al. GH may stimulate early recruitment of
stem cells followed by further clonal expansion due to GH-
induced IGF1 expression (222). The critical importance of GH as
the main endocrine mediator of growth is proven either by the
dwarf phenotype occurring when the levels of GH are insufficient
during early development, or by gigantism, due to hyper-
secretion of GH before puberty (53). Apart from GH secretion,
also defects in GHR and post-receptor signaling may result in
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phenotypes similar to GH hypo-secretion. Laron and coworkers
described for the first time the clinical phenotype of severe
growth defect, and for that reason it is named “Laron
Syndrome” (223). Deletions and mutations in GHR have been
described as causative for this phenotype (224, 225). Studies on a
large cohort of individuals in northeastern Brazil who were
homozygous for a mutation in the GH-releasing hormone
receptor gene revealed comparable phenotypes. These
individuals are characterized by severe dwarfism, due to very
low GH and IGF-1 levels, increased adiposity, and increased
insulin sensitivity (226). Lean body mass (LBM) is reduced, but
muscle function is adequate. Their longevity and quality of life
are normal, and they are largely protected from cancer and less
prone to atherosclerosis (227).

Postnatal growth of mice has been shown to rely on signaling
mediated by JAK2 and STAT5. GHR-/- mice with knock-in
GHR1-391, which eliminates all GH-mediated STAT5b
signaling while still allowing activated hepatic JAK2 and ERK2,
showed substantially decreased growth (228). This study
identified many genes as STAT5b-regulated, such as IGF-1,
Igfals, Socs2, P450 cytochrome, Cyp2b9, and some metabolic
enzymes. Eleven of these were upregulated (e.g., Sth2, Hao3, and
Ang), and nine were downregulated (e.g., Igfals, IGF-1, EgfR,
and Comt). These results confirm the importance of STAT5b in
growth promotion. On the other hand, pituitary adenomas that
cause hypersecretion of GH result into excessive growth called
gigantism when present before puberty, whereas in adulthood it
results in a clinical condition called acromegaly (229). In these
patients excess of GH, besides affecting the size of hands, feet,
and fingers, has important metabolic consequences, suggesting
additional functions for GH, that will be discussed next in
this review.
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Metabolic Regulation
GH holds important roles in metabolic regulation (Figure 6). As
soon as human pituitary extracts became available it was shown
that injection of large amounts of GH both in healthy subjects
and GH-deficient patients stimulated lipolysis and led to
hyperglycemia (230–232). Indeed, as expected, hyper-
insulinemia, impaired glucose tolerance, and overt diabetes
mellitus are common features of acromegaly (233). GH works
as a metabolic switch between carbohydrate and lipid utilization:
in conditions of energy surplus GH acts in concert with IGF-1 to
promote nitrogen retention, while during starvation GH switches
fuel consumption from carbohydrates and protein to lipids. This
guarantees the preservation of protein stores and consequently
maintains LBM. The direct acute metabolic effects of GH in the
basal state are the stimulation of lipolysis and the consequent
increase of free fatty acids (FFA) in the blood. Repetitive GH
pulses in presence of adequate energy supply and concomitant
increased insulin levels induces IGF-1 production (234, 235).
Consequently, in the long range, protein stores and LBM
increases, while body fat mass decreases. GH stimulates the cell
growth of the skeletal muscle by facilitating myoblasts fusion.
Like in more peripheral tissues GH does not regulate IGF-1
expression in myotubes. On the other hand IGF-1 has been
implicated in skeletal muscle hypertrophy, attenuation of age-
related skeletal muscle atrophy, and restoring and improvement
of muscle mass (236, 237).

Studies evaluating the acute effects of GH on protein
metabolism in the basal state have produced inconsistent
conclusions. While some studies indicated that acute GH
stimulation leads to increased muscle protein synthesis, others
did not detect any effects of GH withdrawal in protein metabolism
(238). Less controversial are the studies evaluating the effects of
FIGURE 6 | GH metabolic actions. GH has pleiotropic effects on carbohydrate, lipid, and protein metabolism. GH antagonizes the effects of insulin, secreted by the
pancreas, by two direct ways: inhibiting gluconeogenesis in the liver, and increasing lipolysis in adipocytes. GH also stimulates the production of IGF-1 by the liver.
IGF-1 suppresses gluconeogenesis in the liver via the insulin receptor. In the muscle, IGF-1 stimulates directly glucose uptake, and stimulates protein synthesis. IGF-
1 inhibits GH secretion by the pituitary gland, and therefore indirectly blocks the insulin antagonizing effects of GH, contributing for the glucose homeostasis. The
main consequences of GH metabolic actions are the increase of glucose levels in the blood and preservation of protein storages.
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GH on protein metabolism in pathological states (acromegaly and
GH deficiency) and in stress (exercise and fasting). Stress
conditions are the natural domains of GH, in which the body
benefits from GH effects on substrate metabolism (238). During
fasting GH is the only anabolic hormone to increase (239). GH
administration has been shown to be beneficial for protein
preservation in conditions of dietary restriction (240). Moreover,
fasting in GH-deficient subjects resulted in 50% increase in urea-
nitrogen excretion and 25% increase in muscle protein breakdown
(241, 242). Also, obesity has been associated with decreased levels
of circulating GH, and consequent protein loss (243). Treatment
of these patients with GH has been successful in preserving the
protein stores and LBM (244). Although the metabolic functions
of GH are well recognized, the underlying mechanisms of these
actions are not yet well described.

Under certain conditions (e.g. if cells are deprived of GH for
some hours), GH has acute and transient insulin-like effects
(134). These effects include increased glucose utilization,
increased glucose uptake, anti-lipolysis among others. It has
been suggested that these effects are mediated by the insulin
receptor substrate-1 (IRS-1) and phosphoinositide 3-kinase (PI3-
K), which get activated by GH stimulation (245).

There is an extensive interest in taking advantage of the
anabolic effects of GH for improving athletic performance (246).
During moderate exercise GH appears to stimulate lipolysis
without any effect on protein and glucose metabolism.
Prolonged GH administration results in prevalent lipolysis and
decreased protein oxidation (238). Although administration of
supra-physiological doses of GH to athletes exerts potentially
beneficial effects on body composition, it remains unclear
whether these effects translate to improved performance (247).
Nevertheless, GH abuse has been widespread among the athletes
for more than 20 years, with consequences such as edema, carpal
tunnel syndrome, arthralgias, myalgias, glucose intolerance and
diabetes mellitus (248, 249).

Roles in the Immune System
At the cellular level, GH stimulates differentiation and
mitogenesis and prevents apoptosis (137, 145, 250). There are
also reports that GH signaling results in tubulin polymerization
(251), cell migration and chemotaxis (252). These cellular effects
are implicated in a variety of biological actions of GH in immune
cells. Both GH and its receptor are expressed in various immune
cells as T lymphocytes, B lymphocytes, monocytes and
neutrophils . GH enhances thymopoiesis and T cell
development, modulates cytokine production, enhances B cell
development and antibody production, activates neutrophils and
monocytes, enhances neutrophil adhesion and monocyte
migration, and it has an anti-apoptotic action (253).
Additionally, GH is involved in the formation and functional
activation of mature blood cells (254).

GHR clearly acts in favor of an active immune system. In
aging people the immune response gradually deteriorates due to
a downregulated GH/IGF-1 axis (238). This became particularly
clear during the Covid-19 pandemic in 2020 when death rates
were very high among elderly. Lowered GH/IGF-1 activity
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promote inflammatory activity, causing long term tissue
damage and systemic chronic inflammation due to decreased
levels of anti-inflammatory adipokines such as adiponectin
(255). Somewhat counterintuitive, studies of long living
mutants and caloric restricted animals show decreased
pro-inflammatory activity with increased levels of anti-
inflammatory adipokines such as adiponectin. This suggests
that reduced inflammation promoting healthy metabolism may
represent one of the major mechanisms of extended longevity in
long-lived mutant mice and likely also in the human. Together it
shows that there is a need for insight in the molecular
mechanisms underlying the relation between the GH/IGF-1
axis and immunity. Recently, Ishikawa et al. found that
induction of the mouse major histocompatibility complex
(MHC) antigen blastocyst H2 (H2-Bl) expression by GH is
critical for suppressing innate immune cells such as natural
killer (NK) cells/NK T cells (NKTs) and macrophage-mediated
hepatocyte apoptosis, which favors C57BL/6 mice liver
regeneration and survival after partial hepatectomy. Application
of human leukocyte antigen G (HLA-G, the human homolog of
H2-Bl) gave similar results (107). They used a series of knock-in
mice to prove that, rather than the JAK/STAT pathway, GHR
signaling from SRC, presumably Lyn, bound to the GHR receptor,
activates ERK via RAS (85, 106). Thus, H2-Bl expression is crucial
for reducing innate immune-mediated apoptosis and promoting
survival after partial hepatectomy. This is important progress on
the long road to understand the relation between GH/IGF-1
signaling and immunity regulation.

Roles in the Brain
The activity of GH/GHR in the brain is still a matter of debate.
GH has been described as modulator of stress response and
behavior by acting directly on the brain (256). Recent studies
show that GH has direct trophic effects on the formation of
proopiomelanocortin- and agouti-related peptide-expressing
neurons and provide evidence that GH regulates hypothalamic
neurocircuits controlling energy homeostasis (257). IGF-1 is well
known to be critical for neuronal structure and function, and
models of IGF-1 deficiency demonstrate important hippocampal
deficits, as reduced structural complexity, excitability, learning,
and memory (258–261). Interestingly, low IGF-1 levels have
been associated with risk for vascular dementias (262). On the
contrary, studies with growth hormone deficient (GHD) people
and mouse models support the notion that a decrease in GH
action is beneficial for maintenance of CNS integrity and
functions as learning and memory during aging (263–265).
Both in humans and rodents, circulating GH and IGF-1 levels
decline with age, including in the central nervous system (CNS)
(266). However, despite low overall GH/IGF-1 levels, old Ames
dwarf mice have elevated levels of GH and IGF-1 in the
hippocampus. Also, human subjects with Laron syndrome
show improved rather than impaired memory (13). A likely
explanation for the disconnect between IGF-1 and GH roles in
the brain was provided by Sun et al. who demonstrated that
hippocampal IGF-1 expression is not reduced in GH-deficient
mice (267). Importantly, studies by Efstratiadis provided
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evidence that in contrast to hepatic IGF-1 expression, IGF-1
expression in the brain is not GH-dependent (268). GHD and
GHR deficient mice, which have longer life expectancies than
wild-type, also perform better on cognitive tasks (255).
Furthermore, three prominent models of GH signaling
disruption—Snell dwarf, Ames dwarf, and GHRKO mice—all
suggest reduced GH is beneficial to the CNS. Ames dwarf mice,
which carry a homozygous loss-of-function mutation at the
Prop-1 locus, are deficient in GH, thyroid-stimulating
hormone (TSH), and prolactin-producing cells in the
adenohypophysis. Despite their smaller body size and unique
phenotype, these mice have a significantly increased lifespan and
maintain physiological and cognitive function at youthful levels
longer than controls (269, 270).

GH and Aging
Knockout mice for GHR (“Laron Dwarf”) and mice with
mutations causing GH deficiency or resistance (“Ames dwarf”,
and “Snell dwarf”, and “Little”) live longer than their genetically
normal siblings (4, 227, 271–274). This extended longevity is
remarkable and reproducible, ranging from 25% to over 60%.
These long-lived mice present many signs and indicators of a
healthy delayed aging process. These results would lead to the
conclusion that GH normally released by the pituitary limits life
expectancy, probably due to acceleration of the aging process.
This conclusion is supported by reports showing that reduced
levels of IGF-1, or mutations interfering with IGF-1 signaling
also result in increased mice longevity (275, 276). As expected,
transgenic mice with elevated levels of GH and IGF-1 live shortly
and reflect characteristics of an accelerated aging process (277).
Studies analyzing the influence of GH signaling and lifespan in
several species have been performed. Exciting new findings come
from numerous tissue-specific GHRKO mice and include the
role of GH in pancreatic b-cells to stimulate insulin following
glucose challenge, in weight loss regulation in ablated AgRP
neurons and in glucose homeostasis in LepR neurons. In muscle
GHR disruption enhances insulin sensitivity and extends
lifespan, while adult-onset global disruption of GHR extends
female lifespan, reviewed in (278).

While Besson and co-workers reported that individuals with
congenital GH deficiency live shorter (279), others reported that
GH-deficient/resistant subjects live long with decreased
incidence of cancer, atherosclerosis and vascular pathology, in
spite of being obese (11, 280, 281). These conflicting results may
be connected to another key factor influencing the aging process:
the insulin sensitivity. In mouse models, GH-deficiency is
associated with insulin sensitivity (low levels of circulating
insulin), while GH-deficient people are insulin resistant (high
levels of circulating insulin). In these models, GH-deficiency
allied with insulin sensitivity contributes to low blood glucose
level. This biochemical feature has been negatively correlated
with oxidative stress (282). Since oxidative stress is recognized as
one of the major causes of aging (283), GH may influence the
aging process by acting on oxidative stress pathways.
Accordingly, Ames dwarf mice produce less metabolic
oxidants, and have increased levels of anti-oxidants (284, 285).
On the other hand, in GH-deficient humans, insulin resistance
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increases the oxidative damage (282), induces accumulation of
visceral fat mass (286), and increases the risk of several age-
related diseases (12, 210, 287). Thus, differences in the aging
process between mice and humans suffering from GH-deficiency
may be explained by their difference in insulin sensitivity.

Recent studies show physical and functional interactions of
GHR with IGF-1R, which might strengthen its role in aging (and
cancer). Although absent in hepatocytes, IGF-1R can serve as a
component of the GH signaling pathway, modulating GHR’s
signaling strength and allowing for more local heterogeneity of
GH/IGF-1 actions (86). Not only the GH-induced IGF-1
expression in the liver, also its secretion is subject of
regulation. Studies of the energy sensing liver kinase B1-AMP-
activated protein kinase (LKB1–AMPKa1) pathway implicate
this pathway in the IGF-1 secretion via the small GTPase, Rab8a:
the LKB1–AMPK pathway inhibits IGF-1 secretion. How this
relates to the tumor suppressor functions of LKB1 remains
unclear. Independent of the LKB1−AMP−activity, the insulin
sensitizer and anti−aging/cancer agent, metformin also inhibits
IGF-1 secretion (288–290). Once again, these studies illustrate
the complexity of the GH/IGF-1 axis for metabolism, in
homeostasis, as well in aging and cancer.

In humans, during aging the GH/IGF-1 axis is down
regulated (238). On one hand, this probably contributes to the
effects of aging on body composition, skin characteristics and
functional changes that decrease the quality of life. On the other
hand, decrease in the amounts of GH with age may offer
protection from cancer and other age-related diseases.
Therefore, GH replacement is controversial as an anti-aging
therapy and involves both benefits and risks (274, 291).

GH and Cancer
There is an overwhelming number of studies that implicate
GH/IGF-I in cancer growth. Organisms that lack GHR activity
are virtually devoid of cancer (4, 292–299). In addition to the
pituitary, GH is expressed in colon, prostate, lung, meningiomas
and breast, where it binds the GHR to signal in a paracrine/
autocrine fashion (21, 297, 300–303). Elegant experiments with
rodents reveal an important role of GH in tumor development.
Crossing GHR KO mice with mice predisposed to develop
carcinomas significantly slowed down tumor progression (304).
Additionally, GH deficient rats crossed with rats predisposed to
prostatic cancer showed significantly reduced tumor incidence
and burden (305). Interestingly, GH-deficient female rats are
resistant to chemical induction of mammary carcinogenesis,
whereas GH replacement restores the risk of tumor
development (306). Intracellular (autocrine) GH promotes
breast cancer cell transformation (292, 294, 301, 307, 308) and
induces an invasive phenotype by triggering an epithelial–
mesenchymal transition (EMT), cell motility, and increased
cell survival (295, 297, 300–302).

Strong epidemiological evidence shows that people without
GHR (Laron dwarfism) live healthy normal lives despite low IGF-
1 levels. Strikingly, they do not develop cancer (nor diabetes), while
overabundance of GH/IGF-1 links to cancer incidence (280, 292,
309). For common cancers (breast, colon, prostate, melanoma) tall
size relates to cancer risk (308, 310–314). Most importantly, studies
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with cells, tissues and animals show that GH/IGF-1 stimulates
growth of these same cancers, while cancer growth without GH/
IGF-1 activity is absent (57, 294, 300, 301, 305). Recent data suggest
that also pancreatic ductal adenocarcinomas and small-cell and
squamous-cell lung cancer are driven by GH/IGF-1 (21, 315, 316).
Thus, there is solid evidence that both GH and IGF-1 are important
cancer drivers in humans.

Most cancer cells express GH. This raises the possibility that
autocrine GHR activation might be a cancer-driver. In breast cancer
tissue, that is devoid of pituitary-specific POU domain transcription
factor 1, GH expression is stimulated by progesterone (58, 317).
Approximately two-thirds of human breast cancers are steroid
hormone receptor (ER/PR) positive and treated with
combinations of selective estrogen receptor modulators. It is
currently unknown whether their effect relies on inhibition of GH
expression.Whether triple-negative breast cancer (TNBC) cells, that
do not respond to these modulators, also depend on GH expression,
is unknown. The GH-antagonist, pegvisomant, has been
successfully used in cancer-derived cell lines (295), but does not
inhibit autocrine-acting GH in cancer patients as it probably cannot
interfere with intracellular GH/GHR signaling (82). Direct targeting
of GH signaling is therefore most probably the only possibility for
therapeutic intervention in most cancers.

GH treatment of intestinal organoids closely recapitulating
normal human intestinal mucosa resulted in p53 suppression
and increased Wnt (318). GH treatment leads to down-
regulation of E-cadherin, which controls cell adhesion and
prevents tumor cell dissemination (318, 319). An interesting
JAK-STAT3 and Wnt–b-catenin pathway connection was
revealed that fuels the growth of intestine tumors. The study
presents evidence that partial suppression of systemic JAK-STAT3
signaling is sufficient to limit tumor growth by reducing Bmi-1–
dependent repression of p21 and p16. Normally p21 is repressed
by Bmi-1 in APC-mutant tumors (320, 321). This connection
provides a route to use the GHR-STAT3 pathway for a therapeutic
modality to inhibit APC mutant cancers.

A growing number of studies implicate GH also in
development of therapeutic resistance in a variety of human
cancers (322). Both JAK2- and Lyn-initiated pathways activate,
upon anti-cancer treatment, many different systems that
upregulate ABC-multidrug efflux pumps (ABCG2), block
apoptosis, DNA repair (p53), and pro-apoptotic molecules
(Bax, PPARg), suppresses caspase activation, and induce EMT
and markers of stemness like ALDH1, NANOG, and CD24. In
melanoma, GH upregulates the melanocyte-inducing
transcription factor (MITF), that targets the oncogene MET,
and organizes the resistance to radiation therapy (323).
THE REGULATION OF THE GHR AT THE
CELLULAR LEVEL

Given the many factors that control the GHR activity it is
important to integrate this knowledge into a concept. Except
for autocrine signaling, the number of GHRs at the cell surface
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determines the sensitivity for GH. This is tightly controlled by
the factors discussed above.

Within 20–30 min after synthesis in the ER, the GHR arrives
at the cell surface, is available for GH binding during ~30 min, is
endocytosed, and degraded within 5 min. A good indication for
this can be delineated from the ratio between the precursor
form in the endoplasmic reticulum (110,000 Mr) and the mature
form at the cell surface (130,000 Mr) if separated by SDS-PAGE
and immunoblotted from a crude cell extract using an anti-GHR
antibody: If this ratio is approximately 1:1 at steady state, it
implies that each GHR is present at the cell surface for only
30 min. Protease K treatment on ice shows that almost no
130,000-Mr species is inside, on route to the lysosomes. In
Figures 2, 5 the controlling factors are shown.

Based on data from literature combined with our own data we
propose the following concept for GHR endocytosis. The major
regulators are: ADAM17, JAK2, Ubc13/CHIP/Proteasome, CK2/
bTrCP, bTrCP (DSGxxS), and SOCS2. In steady state (no GH),
endocytosis is enabled by Ubc13/CHIP and bTrCP (DSGxxS).
Both systems are necessary and sufficient. If JAK2 is activated,
S341 is phosphorylated, presumably by an activated CK2, SOCS2
binds to pY487/pY595, and all 4 ubiquitination systems are
necessary and sufficient for endocytosis. Inactivation of each
impedes endocytosis and prolongs GHR signaling capacity.
Summarizing the contribution of each enzyme system to GH
sensitivity is as follows:

ADAM17 (TACE) contributes ~10% to the inactivation of
GHR (Figure 2). It is involved in the shedding of many
membrane proteins and receptors. Its activation, whether that
means increased presence at the cell surface, increased enzymatic
activity via phosphorylation, or increased residence time at the
cell surface is poorly documented. Many signaling pathways are
known to promote ADAM17 phosphorylation including PKCs,
ERKs, p38 MAPK and PLK2 (324). Shedding of the GH-GHR
complex is prohibited (39, 48, 152). Interestingly, Uev1A-Ubc13
(see below) mediates the classical TNFa-induced NF-kB
signaling pathway, and at the same time provides for a
feedback loop together with CHIP to terminate NF-kB
signaling by facilitating ADAM17 maturation via RHBDF2
ubiquitination (325). It would not be surprising if GHR
signaling would act on ADAM17 in an analogous way.

High JAK2 levels inhibit GHR endocytosis, but in normal
cells and tissues this might be not relevant. In IM9 lymphoblasts
high levels of JAK2 may prolong the life time at the cell surface
(92), but in g2A cells, that do not express JAK2, GHR has a
normal half-life (326). In addition to being controlled by
ancillary factors such as SH2-B (91), their activities are
subjected to auto-activation, they trans-phosphorylate tyrosine
residues in specific patterns (327), they detach from activated
receptors to be recycled by phosphatases (92), and in particular,
JAK2 responds to heat stress by irreversible aggregation (103).
Thus, elevated body temperatures lower the responsiveness of
cytokine receptors, and consequently, contribute to a balanced
immune system e.g. during a cytokine storm (328, 329).

Ubc13/CHIP/Proteasome are required for both unstimulated
and GH-stimulated (pGHR) endocytosis (35). The exact
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mechanism is still unknown. The bottom-line is that endocytosis
of the GHR is not possible if either proteasome activity, CHIP or
Ubc13 are lacking. Other observations include: Endocytosis does
not require lysine residues, and proteasome-independent
endocytosis is only possible if the tail is partly truncated (40,
170). Given its nature as co-chaperone Ubc13/CHIP/Proteasome
most likely act in a late step in GHR endocytosis, analogous to
TPR proteins in quality control of mislocalized membrane
proteins (34, 330). In an analogous way, we propose that CHIP
binds with its first TPR motif to the UbE motif, with its central
TPR motif to the proteasome and with its U-box to the ubiquitin
conjugase Ubc13/UEV1a. Recruited by CHIP, the proteasome
might remove the C-terminal part of the GHR downstream of
the DSGxxS motif at amino acid 383: an action that explains why
endocytosis of a truncated GHR requires both UbE and DSGxxS
motifs, but no proteasomal activity (43). This is in line with our
observation that degradation of the GHR cytosolic domain
precedes degradation of the GH-binding domain (331). In this
role CHIP cleans up and definitively terminates GH signaling at
the cell surface. In such a scenario, proteasome inhibitors might
be considered pro-cancer and pro-aging, as they prolong the
residence time of the GHR at the cell surface (39, 209).

Phosphorylation of S341 in the UbE/TPR motif, presumably
by CK2, is responsible for an 150% increase of the rate of GHR
endocytosis and degradation (179). We showed that this is GH-
induced, but also other conditions and stressors might stimulate
S341 phosphorylation. Insulin has been suggested to reduce
GHR levels and GH signaling in PI-3 kinase- and MAPK-
dependent manners (332–334). Also, IGF-1 and estrogen
might use phosphorylation of S341 to decrease the pool of
GHRs at the cell surface (335, 336). Pro-inflammatory
cytokines such as TNFa and IL-6 have been described to
induce GH insensitivity. In the latter case, the kinase acts to
desensitize cells for GH (337). Coincidentally or not, neighboring
JAK2 that binds 45 amino acid residues upstream also is a CK2
client (338). If stressors phosphorylate the S341 in the UbE/TPR
motif, the GHR endocytosis rate is increased, independent of
SOCS2 (see below).

Phosphorylation of the DSGxxS motif: The DSGRTS
sequence in GHR seems to be phosphorylated in basal
conditions, without applying any special treatment or stressor
to the cells (42). However, it is possible that under physiological
conditions the phosphorylation status of DSGRTS might also be
regulatable upon certain stimuli, as for the UbE/TPR motif.
Additionally, in some situations that require high levels of GH
signaling, the body would benefit from higher sensitivity to GH
at steady state, e.g. in the process of chondrogenesis at children’s
growth plate, or during adolescence to stimulate breast growth,
or at the end of mitosis if cells need to growth (339, 340). A
decreased kinase activity towards the DSGRTS serine residues
would result in decreased basal degradation of GHR, increase in
cellular levels of GHR, and consequently increase in
GH sensitivity.

SOCSs induce proteasomal degradation of targets through
ubiquitination (341, 342). However, in case of transmembrane
receptors like GHR and prolactin receptors it is less clear,
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whether they contribute only to their signal termination or
also to their endocytosis/lysosomal targeting/degradation.
SOCS2 binds to a degron sequence TP495AGS downstream of
the STAT5b-interacting pY487. If P495 is mutated to threonine,
the binding to SOCS2 is prevented, and the degradation of
activated GHR (pGHR) is delayed (21). Assuming that the
GHR-JAK2 complex initiates signaling only from the cell
surface, the results of Chhabra and co-workers imply that
pGHR can endocytose and be send to lysosomes, only after
SOCS2 has acted on the pGHR (at the cell surface). In that case,
SOCS2 is part of a concerted action together with JAK2, bTrCP,
and CHIP in initiating signal transduction and preparing the
GHR for endocytosis (Figures 2 and 5). Increased time span
between signal initiation and endocytosis intensifies GH-induced
signaling per GHR complex. In a previous study we showed that
signal transduction can continue after endocytosis (343). At that
time a clear distinction between events starting at the cell surface
and continuing inside was difficult to make. Endocytosis of GHR
with all tyrosine residues deleted is near normal (92). Thus,
SOCS2 contributes only to the deactivation and endocytosis of
pY487, pY595-GHR. If the GH/GHR signaling comes from
inside (autocrine activation), as is assumed in many cancer
cells, there are many open questions: Do the activated GH/
GHR complexes reach the cell surface or are they directly
transported to MVBs, what are the signaling modes and
capacities of these complexes and (how) is it regulated? These
are important open questions to understand the role of the GHR
in cancer growth.

STAT5b binding to tyrosine residues 487, 534, and 627 are
most important for its activation (22). Like GHR knock-out
mice, mice that express GHR(1-391) show insulin sensitivity
with obesity (344). GH-mediated STAT5b activation acts on
multiple sites in the major insulin responsive tissues to promote
insulin sensitivity. These actions are regulated at both
transcriptional and posttranscriptional levels, and although
ChIP analysis indicates direct STAT5b action at the promoter
level of key genes, it is apparent that many of the insulin-
sensitizing actions of GH-STAT5b deficiency are indirect.

Tyr627: In an effort to determine the contribution of
individual tyrosine residues to the STAT5b and MAPK
signaling pathways, we found that the Y627F mutation resulted
in constitutive GHR, JAK2 and MAPK phosphorylation and
activation (22). It is expected that this mutation would act as pro-
cancer and pro-aging, but to our knowledge, this variant has not
been reported in humans yet (345, 346).

In this summary, the role of Lyn per se has not been discussed,
as the molecular details as how it functionally interacts with
JAK2 and the endocytosis machinery are unknown.
CONCLUSIONS AND PERSPECTIVES

In this review, we discussed enzyme systems that regulate the
GH-sensitivity of cells by direct interaction (ADAM17, JAK2,
bTrCP, CHIP, SOCS2). As discussed in the previous section,
except for JAK2, delayed activity of each of the systems predicts
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prolongation of the GHR at the cell surface. As GHR synthesis
continues, delayed endocytosis results in increased GH-
sensitivity. This is illustrated for SOCS2: prolonged GH
signaling, due to a defective GHR-SOCS2 interaction,
promotes cancer progression in human lung cancer (21, 202).
Although the GH/IGF-1 axis is clearly involved in cancer, none
of the other binding sites have yet been identified in genome-
wide association study (204, 205). Apparently, these sites are
highly relevant for life and do not allow mutations.

Considering the GH/IGF-1 axis as the mains switch,
downstream effectors are the executers of the many tasks
(Figure 7) (116). Without exception, these factors function in
various signaling pathways and are regulated not only by
signaling receptors but also in networks of other stressors.
Obviously, mutations in these crucial “house-hold factors”
contribute to several chronic diseases. However, in many
instances, they need the supervision of the GH/IGF-1 axis. As
each of the enzyme systems impact the activity of the GHR
similarly (less interaction results in higher GH-sensitivity) it is
plausible that their presence in the regulation of the hierarchical
command-and-control mode of the GHR indicates their
Frontiers in Endocrinology | www.frontiersin.org 17
importance for major control systems. Accordingly, their loss
of function would result in the same effect as GHR gain of
function. Upregulation of the GH/IGF-1 axis in adult species
leads to chronic diseases as illustrated in Figure 7 (4–10, 12, 13,
347). Indeed, there are many studies that validate this hypothesis.
Taken together, literature on CHIP and SOCS shows striking
analogy with the regulatory potential of the GHR: organisms
with increased CHIP and SOCS2 activity live longer and suffer
less from chronic diseases. This is also observed for some of the
downstream GHR effectors like mTOR (348). Controlling GHR
turnover in the axis: GHRH ! GHRHR ! GH ! GHR (+IGF-
1) ! Growth/Aging, is a challenging mission. Accomplishment
will be highly rewarding as it might offer novel tools to fight the
conditions, that underlie the major diseases of aging populations.
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metabolism and cell cycle (middle panel). The general scheme is in Figure 4. Deregulated downstream effectors have been studied in great detail in promoting many
cancers and chronic diseases (lower panel).
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