52 research outputs found

    Transmission of Viruses from Restroom Use: A Quantitative Microbial Risk Assessment

    Get PDF
    Restroom use has been implicated in a number of viral outbreaks. In this study, we apply quantitative microbial risk assessment to quantify the risk of viral transmission by contaminated restroom fomites. We estimate risk from high-touch fomite surfaces (entrance/exit door, toilet seat) for three viruses of interest (SARS-CoV-2, adenovirus, norovirus) through eight exposure scenarios involving differing user behaviors, and the use of hand sanitizer following each scenario. We assessed the impacts of several sequences of fomite contacts in the restroom, reflecting the variability of human behavior, on infection risks for these viruses. Touching of the toilet seat was assumed to model adjustment of the seat (open vs. closed), a common touch point in single-user restrooms (home, small business, hospital). A Monte Carlo simulation was conducted for each exposure scenario (10,000 simulations each). Norovirus resulted in the highest probability of infection for all exposure scenarios with fomite surfaces. Post-restroom automatic-dispensing hand sanitizer use reduced the probability of infection for each virus by up to 99.75%. Handwashing within the restroom, an important risk-reduction intervention, was not found to be as effective as use of a non-touch hand sanitizer dispenser for reducing risk to near or below 1/1,000,000, a commonly used risk threshold for comparison

    Multilaboratory evaluation of methods for detecting enteric viruses in soils.

    Get PDF
    Two candidate methods for the recovery and detection of viruses in soil were subjected to round robin comparative testing by members of the American Society for Testing and Materials D19:24:04:04 Subcommittee Task Group. Selection of the methods, designated "Berg" and "Goyal," was based on results of an initial screening which indicated that both met basic criteria considered essential by the task group. Both methods utilized beef extract solutions to achieve desorption and recovery of viruses from representative soils: a fine sand soil, an organic muck soil, a sandy loam soil, and a clay loam soil. One of the two methods, Goyal, also used a secondary concentration of resulting soil eluants via low-pH organic flocculation to achieve a smaller final assay volume. Evaluation of the two methods was simultaneously performed in replicate by nine different laboratories. Each of the produced samples was divided into portions, and these were respectively subjected to quantitative viral plaque assay by both the individual, termed independent, laboratory which had done the soil processing and a single common reference laboratory, using a single cell line and passage level. The Berg method seemed to produce slightly higher virus recovery values; however, the differences in virus assay titers for samples produced by the two methods were not statistically significant (P less than or equal to 0.05) for any one of the four soils. Despite this lack of a method effect, th

    Water-based disease and microbial growth

    No full text
    [No abstract available

    Thermostabilization of enteroviruses by estuarine sediment.

    No full text
    p. 305-308No abstract availablehttp://gbic.tamug.edu/request.ht

    Microbial contamination in kitchens and bathrooms of rural Cambodian village households

    No full text

    Virucidal efficacy of laundry sanitizers against SARS-CoV-2 and other coronaviruses and influenza viruses

    No full text
    The clothes laundering process affords numerous opportunities for dissemination of infectious virus from contaminated clothing to appliance surfaces and other household surfaces and eventually to launderer’s hands. We have explored the efficacy of laundry sanitizers for inactivating coronaviruses and influenza viruses. Virucidal efficacy was tested using standardized suspension inactivation methods (EN 14476) or hard-surface inactivation methods (ASTM E1053-20) against SARS-CoV-2, human coronavirus 229E (HCoV 229E), influenza A virus (2009-H1N1 A/Mexico), or influenza B virus (B/Hong Kong). Efficacy was measured in terms of log10 reduction in infectious virus titer, after 15 min contact time (suspension studies) or 5 min contact time (hard surface studies) at 20 ± 1 °C. In liquid suspension studies, laundry sanitizers containing p-chloro-m-xylenol (PCMX) or quaternary ammonium compounds (QAC) caused complete inactivation (≥ 4 log10) of HCoV 229E and SARS-CoV-2 within 15 min contact time at 20 ± 1 °C. In hard surface studies, complete inactivation (≥ 4 log10) of each coronavirus or influenza virus, including SARS-CoV-2, was observed following a 5-min contact time at 20 ± 1 °C. Respiratory viruses may remain infectious on clothing/fabrics and environmental surfaces for hours to days. The use of a laundry sanitizer containing microbicidal actives may afford mitigation of the risk of contamination of surfaces during handling of the laundry and washing appliances (i.e., washer/dryer or basin), adjacent surfaces, the waste water stream, and the hands of individuals handling clothes contaminated with SARS-CoV-2, influenza viruses, or other emerging enveloped viruses. © 2022, The Author(s).Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore