12 research outputs found

    Stable and variable parts of microbial community in Siberian deep subsurface thermal aquifer system revealed in a long-term monitoring study

    Get PDF
    The goal of this work was to study the diversity of microorganisms inhabiting a deep subsurface aquifer system in order to understand their functional roles and interspecies relations formed in the course of buried organic matter degradation. A microbial community of a deep subsurface thermal aquifer in the Tomsk Region, Western Siberia was monitored over the course of five years via a 2.7 km deep borehole 3P, drilled down to a Palaeozoic basement. The borehole water discharges with a temperature of ca. 50oC. Its chemical composition varies, but it steadily contains acetate, propionate, and traces of hydrocarbons and gives rise to microbial mats along the surface flow. Community analysis by PCR-DGGE 16S rRNA genes profiling, repeatedly performed within five years, revealed several dominating phylotypes consistently found in the borehole water, and highly variable diversity of prokaryotes, brought to the surface with the borehole outflow. The major planktonic components of the microbial community were Desulfovirgula thermocuniculi and Methanothermobacter spp. The composition of the minor part of the community was unstable, and molecular analysis did not reveal any regularity in its variations, except some predominance of uncultured Firmicutes. Batch cultures with complex organic substrates inoculated with water samples were set in order to enrich prokaryotes from the variable part of the community. PCR-DGGE analysis of these enrichments yielded uncultured Firmicutes, Chloroflexi, and Ignavibacteriae. A continuous-flow microaerophilic enrichment culture with a water sample amended with acetate contained Hydrogenophilus thermoluteolus, which was previously detected in the microbial mat developing at the outflow of the borehole. Cultivation results allowed us to assume that variable components of the 3P well community are hydrolytic organotrophs, degrading buried biopolymers, while the constant planktonic components of the community degrade dissolved fermentation products to methane and CO2, possibly via interspecies hydrogen transfer. Occasional washout of minor community components capable of oxygen respiration leads to the development of microbial mats at the outflow of the borehole where residual dissolved fermentation products are aerobically oxidized. Long-term community analysis with the combination of molecular and cultivation techniques allowed us to characterize stable and variable parts of the community and propose their environmental roles

    Search for new cultured lipophilic bacteria in industrial fat-containing wastes

    No full text
    Fat-containing wastes that are generated as a result of industrial production of food products and are being accumulated in large quantities in wastewater and sewage treatment plants and present a serious environmental problem. Microorganisms that decompose various types of lipids may be potential candidates for creation of commercial bioformulations for fat destruction. The aim of the study was to obtain pure cultures of lipophilic bacteria from fat-containing wastes, to study their diversity and activity for the development of a biological product. As a result, 30 strains of different phylogenetic groups with lipolytic activity was obtained. The most isolated strains were represented by enterobacteria and pseudomonas members within the Gammaproteobacteria. Almost half of the isolated strains were closely related to conditionally pathogenic microorganisms such as Serratia, Klebsiella etc. Non-pathogenic strains and promising for biotechnology ones belonged to Pseudomonas citronellolis, P. nitroreducens, P. synxantha, P. extremaustralis, Bacillus subtilis, B. amyloliquefaciens, Brevibacillus brevis and Microvirgula sp

    Beneficial effect of the new Leptodophora sp. strain on development of blueberry microclones in the process of their adaptation

    Get PDF
    The paper searches for new solutions for the development of highbush blueberry orchards (Vaccinium corymbosum L. (1753)) in Western Siberia. All species of the genus Vaccinium display special symbiotic mycorrhizal associations with root systemsβ€”ericoid mycorrhiza, which essentially enhances the formation of adventitious and lateral roots. For the first time, we obtained pure cultures of micromycetes associated with the roots of wild species of the family Ericaceae in the Tomsk region, Russia. With regard to the data of molecular genetic analysis of the ITS region sequence, we selected the BR2-1 isolate based on its morphophysiological traits, which was assigned to the genus Leptodophora. Representatives of this genus typically enter into symbiotic relationships with heathers to form ericoid mycorrhizae. We studied the effect of strain BR2-1 on the development of microclones of the highbush blueberry var. Nord blue during their in vitro adaptation and showed its beneficial effect on growth and shoot formation in young plants. Experiments performed using submerged and solid-state methods showed that the most optimal method for commercial production of BR2-1 is cultivation on grain sterilized by boiling, followed by spore washing

    Draft genome sequence of the first acid-tolerant sulfate-reducing deltaproteobacterium Desulfovibrio sp. TomC having potential for minewater treatment

    No full text
    The sulfidogenic bacterium Desulfovibrio sp. TomC was isolated from acidic waste at the abandoned gold ore mining site in the Martaiga gold ore belt, Western Siberia. This bacterium, being the first reported acid-tolerant gram-negative sulfate-reducer of the order Deltaproteobacteria, is able to grow at pH as low as 2.5 and is resistant to high concentrations of metals. The draft 5.3 Mb genome sequence of Desulfovibrio sp. TomC has been established and provides the genetic basis for application of this microorganism in bioreactors and other bioremediation schemes for the treatment of metal-containing wastewater
    corecore