143 research outputs found

    Preparation for the Proof of Concept Flight of the Veggie Plant Growth Chamber

    Get PDF
    Veggie is a small plant growth chamber designed and built by ORBITEC that will fly to the International Space Station on SpaceX-3, scheduled for the summer of 2013. Ultimately Veggie will be used for research, education and outreach, and crew recreation. We want to demonstrate the functionality of this hardware by testing a scenario that could allow the crew to grow and consume fresh vegetables. Veggie will be collapsed and transported flat in a cargo transfer bag, and deployed on orbit, where it will be installed in an EXPRESS rack. The chamber consists of three subsystems: an LED light cap, a transparent bellows, and a root mat reservoir assembly. The bellows and flexible support arms allow the distance between plants and light cap to be adjusted for different ages and types of plants. Researchers at Kennedy Space Center and ORBITEC have been working to develop the plant growth interfaces for the proof of concept flight. We have developed a rooting pillow, consisting of a small bag containing media, time release fertilizer, seeds, and a wicking surface to conduct water from the root mat reservoir. Prototype pillows have been tested and results have influenced the design of flight pillows, which will be modified for microgravity from flight-approved materials. Several studies have been conducted selecting species and comparing media types in analog systems. Water content seems to be the most important factor differentiating media types in these small growth volumes (100 mL). Media type also influenced microbial levels on plants. Since produce sanitizing agents are not currently approved for growing food crops on orbit, plants and media types having very low microbial levels are being selected. Lettuce, mizuna, and other salad greens typically have microbial counts less than 10(exp 4) colony forming units and thus are good candidates for spaceflight. As we approach flight verification testing, we will finalize species, media selection, harvesting, and microbial sampling procedures. Next steps include testing of Veggie flight and ground hardware and associated equipment. This research was funded by NASA

    Media Effects on Lettuce Growth in "Pillows" Designed for the VEGGIE Spaceflight Growth Chamber

    Get PDF
    VEGGIE is a prototype vegetable production unit for space designed by Orbital Technologies Corporation that is being developed to fly on the International Space Station. A modular plant rooting system "pillow" is being designed to support plant growth in VEGGIE under microgravity conditions. VEGGIE pillows are small self-contained packets of media with time-release fertilizer that can wick water passively from a root mat reservoir. Seeds are planted in pillows and the entire root system of a plant is contained as the crop develops, preventing loss into the spacecraft cabin. This study compared five media types and three lettuce cultivars in pillows growing in a VEGGIE analog environment.. Media consisted of a peat-based potting mix (Fafard #2,Conrad Fafard Inc., Agawam, MA), and a calcined clay, (arcillite, 1-2 mm sifted, Turface Proleague, Profile LLC, Buffalo Grove IL) as well as three different blends of the two, 70:30, 50:50, and 30:70. Lettuce cultivars tested were 'Sierra', a bi-colored French crisp Batavia lettuce, 'Outredgeous', a red romaine lettuce and 'Flandria', a green butter head variety. Plants were grown for 28 days, harvested, biometric data was obtained, and tissue mineral analysis was performed. For all cultivars, lettuce plants grown in the media blends were more productive than those in the individual media types. All cultivars showed bell-shaped curves in response to increases in arcillite / decreases in Fafard #2 for leaf area, fresh, and dry mass. Plants in 100% Fafard #2 and in 100% arcillite were stunted, but only those in higher levels of Fafard #2 (70% and 100%) had reduced shoot percent moisture, possibly indicating that mechanisms causing stunting differed. Variation in tissue nutrient content are consistent with this, with Mg and Mn highest in plants grown in 100% Fafard and decreasing as the concentration of arcillite increased. Color also varied with media, especially in the 'Sierra' lettuce, with plants grown in increasing levels of Fafard #2 being much more red and those in 100% arcillite almost completely green. The red-leaf cultivar 'Outredgeous' showed increasing chlorophyll (SPAD values) with increasing percentage of arcillite. In all cultivars tested it appears that a mixture of media types, usually 50:50 or 30:70 Fafard #2: arcillite, sustained healthier, more productive plants. Smaller, less productive plants in either of the individual media may indicate stress issues, however more work is needed to understand the reasons for this sub-optimal growth. This work was supported by NAS

    Plant Atrium System for Food Production in NASA's Deep Space Habitat Tests

    Get PDF
    In preparation for future human exploration missions to space, human habitat designs and concepts need to be tested to assess integration issues, power requirements, crew operations, and technology I subsystem performance. One potential subsystem for early habitats is supplemental food production. Fresh foods, such as vegetables and small fruits, could be harvested on a continuous basis to improve the diet and quality of life. The system would need to fit conveniently into the habitat and not interfere with other components or operations. To test this concept, a plant growing "atrium" was designed to surround the lift between the lower and upper modules of the Deep Space Habitat and deployed at NASA DRA TS test site in 2011 and at NASA's JSC in 20I2. With this approach, un-utilized volume provided an area for vegetable growth. For the 20 II test, mizuna, lettuce, basil, radish and sweetpotato plants were grown in trays using commercially available red I blue LED light fixtures. Seedlings were transplanted into the atrium and cared for by the crew. Plants were then harvested two weeks later following completion of the test. In 20I2, mizuna, lettuce, and radish plants were grown similarly but under flat panel banks of white LEDs. In 20 I2, the crew went through plant harvesting, including sanitizing the leafy greens and radishes, which were then consumed. Each test demonstrated successful production of vegetables within a functional hab module. The round red I blue LEDs for the 20Il test lighting cast a purple light in the hab, and were less uniformly distributed over the plant trays. The white LED panels provided broad spectrum light with more uniform distribution. Post-test questionnaires showed that the crew enjoyed tending and consuming the plants, and that the white LED light in 2012 provided welcome extra light for the main hab area

    Privacy safeguards and online anonymity

    Get PDF
    In a world that is increasingly more connected, digital citizens, actively or passively accept to transmit information, part of which are “personal data”. This information is often collected and elaborated by third parties to infer further knowledge about users. The act of gathering the data is commonly called “tracking” and can be performed through several means. The act of analysing and processing those data and relate them to the individual is called “profiling”. The aim of this JRC Technical report is to be an instrument of support for the Digital Citizens to help them to protect and to manage their privacy during online activities. After a brief introduction in Chapter 1, the following chapter is dedicated to the description of two legitimate use-cases to track and profile users on-line, namely target advertising and personalisation of the user experience. Chapter 3 and 4 identify and analyse the set of techniques currently used by online digital providers to track citizens and profile them based on their online behaviour. Chapter 5 deals with some of the available tools cited in chapter 6 that could be helpful to protect the privacy while browsing online. Chapter 6 aims to raise awareness among users and provide some guidelines to address specific issues related to privacy through a multidisciplinary approach. The report concludes highlighting the importance of raising awareness among digital users and empower them through education, technical and legal tools, including the General Data Protection Regulation (GDPR) to overcome possible privacy issues.JRC.E.3-Cyber and Digital Citizens' Securit

    Expert consensus document: Mind the gaps—advancing research into short-term and long-term neuropsychological outcomes of youth sports-related concussions

    Get PDF
    Sports-related concussions and repetitive subconcussive exposure are increasingly recognized as potential dangers to paediatric populations, but much remains unknown about the short-term and long-term consequences of these events, including potential cognitive impairment and risk of later-life dementia. This Expert Consensus Document is the result of a 1-day meeting convened by Safe Kids Worldwide, the Alzheimer\u27s Drug Discovery Foundation, and the Andrews Institute for Orthopaedics and Sports Medicine. The goal is to highlight knowledge gaps and areas of critically needed research in the areas of concussion science, dementia, genetics, diagnostic and prognostic biomarkers, neuroimaging, sports injury surveillance, and information sharing. For each of these areas, we propose clear and achievable paths to improve the understanding, treatment and prevention of youth sports-related concussions

    The Stability of Retrospective Pre-injury Symptom Ratings Following Pediatric Concussion.

    Get PDF
    Objective: To determine the stability of children\u27s retrospective ratings of pre-injury levels of symptoms over time following concussion. Methods: Children and adolescents (n = 3,063) between the ages of 5–17 diagnosed with a concussion by their treating pediatric emergency department (PED) physician within 48 h of injury completed the Post-Concussion Symptom Inventory (PCSI) at the PED and at 1, 2, 4, 8, and 12-weeks post-injury. At each time point, participants retrospectively recalled their pre-injury levels of post-injury symptoms. The PCSI has three age-appropriate versions for children aged 5–7 (PCSI-SR5), 8–12 (PCSI-SR8), and 13–18 (PCSI-SR13). Total scale, subscales (physical, cognitive, emotional, and sleep), and individual items from the PCSI were analyzed for stability using Gini\u27s mean difference (GMD). Results: The mean GMD for total score was 0.31 (95% CI = 0.28, 0.34) for the PCSI-SR5, 0.19 (95% CI = 0.18, 0.20) for the PCSI-SR8, and 0.17 (95% CI = 0.16, 0.18) for the PCSI-SR13. Subscales ranged from mean GMD 0.18 (physical) to 0.31 (emotional) for the PCSI-SR8 and 0.16 (physical) to 0.31 (fatigue) for the PCSI-SR13. At the item-level, mean GMD ranged from 0.13 to 0.60 on the PCSI-SR5, 0.08 to 0.59 on the PCSI-SR8, and 0.11 to 0.41 on the PCSI-SR13. Conclusions: Children and adolescents recall their retrospective pre-injury symptom ratings with good-to-perfect stability over the first 3-months following their concussion. Although some individual items underperformed, variability was reduced as items were combined at the subscale and full-scale level. There is limited benefit gained from collecting multiple pre-injury symptom queries
    • …
    corecore