9,271 research outputs found

    Prompt Beta Spectroscopy as a Diagnostic for Mix in Ignited NIF Capsules

    Full text link
    The National Ignition Facility (NIF) technology is designed to drive deuterium-tritium (DT) internal confinement fusion (ICF) targets to ignition using indirect radiation from laser beam energy captured in a hohlraum. Hydrodynamical instabilities at interfaces in the ICF capsule leading to mix between the DT fue l and the ablator shell material are of fundamental physical interest and can affect the performance characteristics of the capsule. In this Letter we describe new radiochemical diagnostics for mix processes in ICF capsules with plastic or Be (0.9%Cu) ablator shells. Reactions of high-energy tritons with shell material produce high-energy β\beta-emitters. We show that mix between the DT fuel and the shell material enhances high-energy prompt beta emission from these reactions by more than an order of magnitude over that expected in the absence of mix

    Low-Metallicity Gas Clouds in a Galaxy Proto-Cluster at Redshift 2.38

    Full text link
    We present high resolution spectroscopy of a QSO whose sight-line passes through the halo of a pair of elliptical galaxies at redshift 2.38. This pair of galaxies probably lies at the center of a galaxy proto-cluster, and is embedded in a luminous extended Ly-alpha nebula. The QSO sight-line intersects two small gas clouds within this halo. These clouds have properties similar to those of high velocity clouds (HVCs) seen in the halo of the Milky Way. The gas is in a cool (< 2 x 10^4 K) and at least 20% neutral phase, with metallicities in the range -3.0 < [Fe/H] < -1.1 and neutral hydrogen column densities of ~10^19.5 /cm^2. The origin of these clouds is unclear. The presence of low metallicity gas within this possible proto-cluster implies either that the intra-cluster medium has not been enriched with metals at this redshift, or the clouds are embedded within a hot, ionized, metal-rich gas phase.Comment: Accepted to appear in ApJ Letter

    Some comments on the problem of using vertical facies changes to infer accommodation and eustatic sea-level histories with examples from Utah and the southern Canadian Rockies

    Get PDF
    Some of the confusion in the literature on the history of eustatic sea level over time results from the incorrect assumption that the eustatic signal is given directly by vertical changes in water depths inferred from vertical facies patterns in stratigraphic sections. In particular, increases in water depth are often assumed to record an increase in eustatic sea level, and decreases in water depth are often assumed to record a decrease in eustatic sea level. Vertical changes in water depth, however, reflect only the local relative sea-level change, which is influenced by the balance between changes in the rate at which accommodation space forms (space available for sediments to fill) and changes in the rate at which sediment fills that space. Under certain conditions, which may not be uncommon in many areas, the balance may be such that no significant water depth change occurs, even during a relatively large third-order eustatic cycle, or such that shoaling occurs during a eustatic sea-level rise and deepening occurs during a eustatic sea-level fall. The key to sorting out the correct relation between eustatic sea level and vertical facies changes lies in first identifying the accommodation change, along with its timing and scale, and then determining whether that accommodation change (not the water depth change) occurred synchronously over a large region (continental or intercontinental). Using R2 analysis, a procedure we developed recently, we attempt to distinguish the local relative sea level from the regional or eustatic sea-level signal by recovering the accommodation history from detailed stratigraphic sections that can be correlated over large distances. We describe two examples from the late Middle Cambrian carbonate platform strata in the Cordillera of North America. In the first example, from the Pierson Cove and Trippe Formations in south-central Utah, the water depth changed little during a large (third-order?) accommodation cycle because the accumulation of sediment essentially kept pace with the change in accommodation. The form of the accommodation cycle in the Utah example is corroborated by the results of a Fischer plot of shoaling-upward meter-scale cycles in both formations. The Fischer plot is constrained by evidence, which we describe in another article (Bond et al., this volume) that the cycles are periodic (orbitally forced). In the second example, from the approximately correlative Arctomys and Waterfowl Formations in the southern Canadian Rockies, we have identified a similar-scale accommodation cycle in which the water depth decreased as accommodation increased and then increased as accommodation decreased. This complicated relation between the accommodation cycle and the water depth appears to be due to the effects of a large change in the sediment accumulation rate. The eustatic origin of the accommodation cycle observed in both examples is implied by the similarity in its timing and scale in several stratigraphic sections in the southern Canadian Rockies and in Utah. Demicco et al. (this volume) suggest a different relative sea-level history for the Arctomys and Waterfowl Formations in the southern Canadian Rockies. They suggest, mainly on the basis of water depth changes, that the Arctomys formed during a relative sea-level fall and that the Waterfowl formed during a relative sea-level rise. We do not disagree with their interpretation of the water depth change; our field data indicate the same water depth history in sections 40 km (25 mi) north of theirs. We also recognize in our R2 curves the same cycles that they describe within the Waterfowl Formation (one full cycle and part of another), but in our curves these cycles are strongly modulated by at least two lower orders of cyclicity with time scales of several millions of years to tens of millions of years. We suggest that their interpretation of the Arctomys-Waterfowl sea-level history applies only to the local relative sea-level change, probably mainly confined to the southern Canadian Rockies. Because of the effects of changing sediment accumulation rates, the local sea-level history for these strata is almost the reverse of the accommodation and, probably, the eustatic sea-level change. In addition, their field interpretations and modeling of the sea-level history for the Waterfowl Formation are limited by their emphasis on meter-scale cyclicity and the acquisition of data from a short stratigraphic section comprising only the Arctomys and Waterfowl Formations. Observations limited in this way tend to obscure the lower orders of cyclicity, which we argue from the results of our R2 analyses were important components of the eustatic signal in Middle and Late Cambrian time

    Some comments on the problem of using vertical facies changes to infer accommodation and eustatic sea-level histories with examples from Utah and the southern Canadian Rockies

    Get PDF
    Some of the confusion in the literature on the history of eustatic sea level over time results from the incorrect assumption that the eustatic signal is given directly by vertical changes in water depths inferred from vertical facies patterns in stratigraphic sections. In particular, increases in water depth are often assumed to record an increase in eustatic sea level, and decreases in water depth are often assumed to record a decrease in eustatic sea level. Vertical changes in water depth, however, reflect only the local relative sea-level change, which is influenced by the balance between changes in the rate at which accommodation space forms (space available for sediments to fill) and changes in the rate at which sediment fills that space. Under certain conditions, which may not be uncommon in many areas, the balance may be such that no significant water depth change occurs, even during a relatively large third-order eustatic cycle, or such that shoaling occurs during a eustatic sea-level rise and deepening occurs during a eustatic sea-level fall. The key to sorting out the correct relation between eustatic sea level and vertical facies changes lies in first identifying the accommodation change, along with its timing and scale, and then determining whether that accommodation change (not the water depth change) occurred synchronously over a large region (continental or intercontinental). Using R2 analysis, a procedure we developed recently, we attempt to distinguish the local relative sea level from the regional or eustatic sea-level signal by recovering the accommodation history from detailed stratigraphic sections that can be correlated over large distances. We describe two examples from the late Middle Cambrian carbonate platform strata in the Cordillera of North America. In the first example, from the Pierson Cove and Trippe Formations in south-central Utah, the water depth changed little during a large (third-order?) accommodation cycle because the accumulation of sediment essentially kept pace with the change in accommodation. The form of the accommodation cycle in the Utah example is corroborated by the results of a Fischer plot of shoaling-upward meter-scale cycles in both formations. The Fischer plot is constrained by evidence, which we describe in another article (Bond et al., this volume) that the cycles are periodic (orbitally forced). In the second example, from the approximately correlative Arctomys and Waterfowl Formations in the southern Canadian Rockies, we have identified a similar-scale accommodation cycle in which the water depth decreased as accommodation increased and then increased as accommodation decreased. This complicated relation between the accommodation cycle and the water depth appears to be due to the effects of a large change in the sediment accumulation rate. The eustatic origin of the accommodation cycle observed in both examples is implied by the similarity in its timing and scale in several stratigraphic sections in the southern Canadian Rockies and in Utah. Demicco et al. (this volume) suggest a different relative sea-level history for the Arctomys and Waterfowl Formations in the southern Canadian Rockies. They suggest, mainly on the basis of water depth changes, that the Arctomys formed during a relative sea-level fall and that the Waterfowl formed during a relative sea-level rise. We do not disagree with their interpretation of the water depth change; our field data indicate the same water depth history in sections 40 km (25 mi) north of theirs. We also recognize in our R2 curves the same cycles that they describe within the Waterfowl Formation (one full cycle and part of another), but in our curves these cycles are strongly modulated by at least two lower orders of cyclicity with time scales of several millions of years to tens of millions of years. We suggest that their interpretation of the Arctomys-Waterfowl sea-level history applies only to the local relative sea-level change, probably mainly confined to the southern Canadian Rockies. Because of the effects of changing sediment accumulation rates, the local sea-level history for these strata is almost the reverse of the accommodation and, probably, the eustatic sea-level change. In addition, their field interpretations and modeling of the sea-level history for the Waterfowl Formation are limited by their emphasis on meter-scale cyclicity and the acquisition of data from a short stratigraphic section comprising only the Arctomys and Waterfowl Formations. Observations limited in this way tend to obscure the lower orders of cyclicity, which we argue from the results of our R2 analyses were important components of the eustatic signal in Middle and Late Cambrian time

    Health System Performance for the High-Need Patient: A Look at Access to Care and Patient Care Experiences

    Get PDF
    Achieving a high-performing health system will require improving outcomes and reducing costs for high-need, high-cost patients—those who use the most health care services and account for a disproportionately large share of health care spending. Goal: To compare the health care experiences of adults with high needs—those with three or more chronic diseases and a functional limitation in the ability to care for themselves or perform routine daily tasks—to all adults and to those with multiple chronic diseases but no functional limitations. Methods: Analysis of data from the 2009–2011 Medical Expenditure Panel Survey. Key findings: High-need adults were more likely to report having an unmet medical need and less likely to report having good patient–provider communication. High-need adults reported roughly similar ease of obtaining specialist referrals as other adults and greater likelihood of having a medical home. While adults with private health insurance reported the fewest unmet needs overall, privately insured highneed adults reported the greatest difficulties having their needs met. Conclusion: The health care system needs to work better for the highest-need, most-complex patients. This study's findings highlight the importance of tailoring interventions to address their need

    Evidence for orbital forcing of Middle Cambrian peritidal cycles: Wah Wah range, south-central Utah

    Get PDF
    We have applied a new method (gamma method) for constructing high-resolution age models to peritidal cycles in the Middle Cambrian Pierson Cove Formation (13 cycles) and the Trippe Limestone (40 cycles) exposed in the Wah Wah range, south-central Utah. Spectral analyses of the time series for the gamma age model indicate the presence of significant spectral peaks (relative to a null model) in both data sets. After experimenting with different assumptions for the duration of the mean primary or measured cycle, we found that for the Trippe data set assigning the mean duration of precession to the mean primary cycle produced a reasonably good correlation between the spectrum and the early Paleozoic estimate of insolation forcing. In particular, the periods of the three significant spectral peaks in the Trippe record correspond to estimated line periods for eccentricity and precession and a combination tone of precession. A spectrum for the Trippe cycles based on the conventional assumption that time is proportional to thickness contained only one significant peak, and reasonable estimates of the duration of the mean primary cycle produced a poor fit to the insolation model. Spectral results from the Pierson Cove cycles were less compelling, possibly because of the short length of the record. The presence in the Trippe spectrum of significant peaks with periods corresponding to high-frequency orbital variations suggests that preservation of high-frequency Milankovitch signals is more common than implied by models of shallow marine cyclicity based on Pleistocene sea-level records. The results of these spectral analyses suggest that the gamma method can be used to construct age models for peritidal carbonate cycles that are accurate enough to test for periodicity and deterministic mechanisms, even in rocks as old as the Cambrian
    • …
    corecore