294 research outputs found

    A Virtual Architecture Framework for Immersive Learning Environments

    Get PDF
    This thesis presents a set of experimental studies to understand the benefits of utilising architectural design to create virtual environments optimised for completing a series of cognitively demanding tasks. Each field of investigation is reviewed separately. The first field of investigation relates to spatial design and analysis from an architectural standpoint. The second is concerned with memory, spatial abilities, and embodied cognition. Two VR-based user-studies are designed to further explore the potential interactions between these fields of knowledge. An initial experiment called “Archimemory” is based on a memory palace, a historical mnemonic technique, to explore how spatial knowledge representation can enhance memory retrieval. It compares the benefits of using different architectural designs in VR to support participants’ recall accuracy of a sequence of playing cards. The main user study,called the "Immersive Virtual Architecture Studio" (IVAS), validates a new methodology to study the effect of spatial qualities on embodied cognition related tasks. A spatial analysis using the isovist technique provides an objective approach to measure spatial qualities such as openness and complexity. Participants have to perform a batch of cognitive tasks in the IVAS. Results from the spatial analysis are compared to participants subjective rating of the same spatial qualities as well as their performance.Findings suggest that a spatial performance metric can be evaluated for each room, for instance, it was the highest in the case of the more closed (fewer windows) and more complex (with columns) condition. The combination of spatial analysis and performance metrics obtained from these two novel VR applications, Archimemory and IVAS, leads this research to form a Virtual Architecture Framework. Guidelines are proposed for VR architects, UX designers and scientists to adopt this framework to support further exploration and evaluation of spatial design to enhance human cognitive abilities when experiencing immersive learning environments

    The Effect of Spatial Design on User Memory Performance Using the Method of Loci in VR

    Get PDF
    Based on the Method of Loci, the following experiment compares the effect of two different virtual environments on participants' memory performance. The primary task consists of remembering a sequence of random playing cards. Each virtual environment is based on a different architectural style with a different layout. One is inspired by a Palladian style architecture, and the other by a Modern curved architecture

    Toward optimized code generation through model-based optimization

    Get PDF
    International audienceModel-Based Development (MBD) provides an additional level of abstraction, the model, which lets engineers focus on the business aspect of the developed system. MBD permits automatic treatments of these models with dedicated tools like synthesis of system's application by automatic code generation. Real-Time and Embedded Systems (RTES) are often constrained by their environment and/or the resources they own in terms of memory, energy consumption with respect to performance requirements. Hence, an important problem to deal with in RTES development is linked to the optimization of their software part. Although automatic code generation and the use of optimizing compilers bring some answers to application optimization issue, we will show in this paper that optimization results may be enhanced by adding a new level of optimizations in the modeling process. Our arguments are illustrated with examples of the Unified Modeling Language (UML) state machines diagrams which are widely used for control aspect modeling of RTES. The well-known Gnu Compiler Collection (GCC) is used for this study. The paper concludes on a proposal of two step optimization approach that allows reusing as they are, existing compiler optimizations

    In-situ investigation on the effects of groundwater flows around bore-hole heat exchangers

    Full text link
    peer reviewedAlthough vertical Borehole Heat Exchangers (BHE) is a booming technology for both cooling and heating buildings, several improvements could still be proposed in the dimensioning of such systems. Nowadays, most of the dimensioning methods consider only radial conductive heat flux around BHE using a homogeneous ground thermal conductivity determined from thermal response tests (TRT) or tables. Impacts of groundwater flows on the heat refurbishment around BHE are generally not explicitely considered.   Many numerical or analytical studies have investigated and quantified the positive impact of groundwater flows on the performance of BHE [4]. However, those results are rarely compared and validated with in-situ temperature measurements around BHE. Such measurements require the installation of temperature sensors in the ground around BHE. In this work, an experimental platform composed of 4 vertical BHE drilled at depths of 85 m has been exploited. The 4 vertical BHE cross a succession of horizontal geological layers (Fig. 1). The study focuses on the heat transfers in a 30-m thick sand unconfined aquifer layer, whose 17 m are saturated. Each BHE is equipped with PT100 (installed at the extremities of the unconfined aquifer and just below the groundwater table level). Based on the expected direction of groundwater fluxes, the upstream BHE is thermally activated with a pre-determined heat injection and duration.  The temperature evolution is recorded by means of PT100 sensors in the activated BHE and in the three non-activated BHEs. Groudwater velocity in the upper part of the aquifer is characterized through a non-convential tracer test [1] performed in a piezometer drilled at the center of the 4 BHE (v= 7 10-7 m/s). A clear impact on the groundwater flows on the temperature field in the aquifer around the activated BHE is observed. To quantify the heat transfers in the ground around the activated BHE, a methodology was developed to infer the hydro-geothermal parameters of the ground, namely the intrinsic thermal conductivity, the volumetric heat capacity and groundwater velocity and direction. From an analytical solution considering conductive, advective and dispersive heat transfers [2], the hydro-geothermal parameters of the ground are obtained by fitting the measured to the predicted temperatures evolution (Fig. 2 – Table 1). The obtained hydro-geothermal parameters demonstrate (i) a groundwater velocity in the upper part consistent with the value measured in-situ, (ii) the important role of the saturated aquifer that significantly enhances the apparent thermal conductivity of the ground and, in case of groundwater flows, induces an anisotropic propagation of the temperature plume [3](Fig.3), as well as (iii) the non-uniform groundwater flows along the saturated part of the aquifer (Table 1)

    Structural behaviour of unstabilized rammed earth constructions submitted to hygroscopic conditions

    Full text link
    peer reviewedRammed earth constructions exhibit strength and deformation properties that evolve as a function of the relative humidity of the air in contact with the walls. This effect must be considered in the structural design of the construction. This work studies, through finite element simulation, the impact of the hygroscopic transfers through the wall on the structural response of a classical two-storey rammed earth building. The coupling between the mechanical and the hygroscopic behaviour is considered by the concept of effective stress for unsaturated soils, in order to reproduce the effect of suction on the strength, the stiffness and the volumetric variations of the rammed earth. The simulations show classical deformation of the structure due to distributed load on the floors while the hygroscopic changes in the rammed earth (essentially drying) induce additional displacements of the walls that remain in a very acceptable range. Finally, an extreme case is envisaged in which the loads on the floors are increased excessively in order to study the plastic response of the wall

    A unified failure criterion for unstabilized rammed earth materials upon varying relative humidity conditions

    Full text link
    peer reviewedAbstract Uniaxial compression tests and indirect tensile tests are performed on compacted clayey silt samples upon varying suctions in order to assess the influence of changes in the relative humidity conditions on the strength of unstabilized rammed earthen building materials. The results show that suction plays an important role on the strength of the material. Also the ability of the Belgian clayey silt to develop sufficient mechanical strength to be used as an unstabilized earthen construction material is demonstrated whatever the relative humidity conditions, excepted the fully water saturated state. The experimental data are interpreted in the context of unsaturated soil mechanics using the generalized effective stress concept. This constitutive framework allows defining a unified failure criterion predicting the strength of the earthen building material as a function of the environmental hygroscopic conditions

    A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model

    Get PDF
    Symbiotic gut microorganisms (microbiome) interact closely with the mammalian host's metabolism and are important determinants of human health. Here, we decipher the complex metabolic effects of microbial manipulation, by comparing germfree mice colonized by a human baby flora (HBF) or a normal flora to conventional mice. We perform parallel microbiological profiling, metabolic profiling by 1H nuclear magnetic resonance of liver, plasma, urine and ileal flushes, and targeted profiling of bile acids by ultra performance liquid chromatography–mass spectrometry and short-chain fatty acids in cecum by GC-FID. Top-down multivariate analysis of metabolic profiles reveals a significant association of specific metabotypes with the resident microbiome. We derive a transgenomic graph model showing that HBF flora has a remarkably simple microbiome/metabolome correlation network, impacting directly on the host's ability to metabolize lipids: HBF mice present higher ileal concentrations of tauro-conjugated bile acids, reduced plasma levels of lipoproteins but higher hepatic triglyceride content associated with depletion of glutathione. These data indicate that the microbiome modulates absorption, storage and the energy harvest from the diet at the systems level
    corecore