9 research outputs found

    Interleukin-10 Production by T and B Cells Is a Key Factor to Promote Systemic Salmonella enterica Serovar Typhimurium Infection in Mice

    Get PDF
    Indexción: Scopus.Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative bacterium that produces disease in numerous hosts. In mice, oral inoculation is followed by intestinal colonization and subsequent systemic dissemination, which leads to severe pathogenesis without the activation of an efficient anti-Salmonella immune response. This feature suggests that the infection caused by S. Typhimurium may promote the production of anti-inflammatory molecules by the host that prevent efficient T cell activation and bacterial clearance. In this study, we describe the contribution of immune cells producing the anti-inflammatory cytokine interleukin-10 (IL-10) to the systemic infection caused by S. Typhimurium in mice. We observed that the production of IL-10 was required by S. Typhimurium to cause a systemic disease, since mice lacking IL-10 (IL-10-/-) were significantly more resistant to die after an infection as compared to wild-type (WT) mice. IL-10-/- mice had reduced bacterial loads in internal organs and increased levels of pro-inflammatory cytokines in serum at 5 days of infection. Importantly, WT mice showed high bacterial loads in tissues and no increase of cytokines in serum after 5 days of S. Typhimurium infection, except for IL-10. In WT mice, we observed a peak of il-10 messenger RNA production in ileum, spleen, and liver after 5 days of infection. Importantly, the adoptive transfer of T or B cells from WT mice restored the susceptibility of IL-10-/- mice to systemic S. Typhimurium infection, suggesting that the generation of regulatory cells in vivo is required to sustain a systemic infection by S. Typhimurium. These findings support the notion that IL-10 production from lymphoid cells is a key process in the infective cycle of S. Typhimurium in mice due to generation of a tolerogenic immune response that prevents bacterial clearance and supports systemic dissemination

    Impact of Cigarette Smoking on the Gastrointestinal Tract Inflammation: Opposing Effects in Crohn’s Disease and Ulcerative Colitis

    No full text
    Cigarette smoking is a major risk factor for gastrointestinal disorders, such as peptic ulcer, Crohn’s disease (CD), and several cancers. The mechanisms proposed to explain the role of smoking in these disorders include mucosal damage, changes in gut irrigation, and impaired mucosal immune response. Paradoxically, cigarette smoking is a protective factor for the development and progression of ulcerative colitis (UC). UC and CD represent the two most important conditions of inflammatory bowel diseases, and share several clinical features. The opposite effects of smoking on these two conditions have been a topic of great interest in the last 30 years, and has not yet been clarified. In this review, we summarize the most important and well-understood effects of smoking in the gastrointestinal tract; and particularly, in intestinal inflammation, discussing available studies that have addressed the causes that would explain the opposite effects of smoking in CD and UC

    Pathogenicity island excision during an infection by Salmonella enterica serovar Enteritidis is required for crossing the intestinal epithelial barrier in mice to cause systemic infection.

    No full text
    Pathogenicity island excision is a phenomenon that occurs in several Salmonella enterica serovars and other members of the family Enterobacteriaceae. ROD21 is an excisable pathogenicity island found in the chromosome of S. Enteritidis, S. Dublin and S. Typhi among others, which contain several genes encoding virulence-associated proteins. Excision of ROD21 may play a role in the ability of S. Enteritidis to cause a systemic infection in mice. Our previous studies have shown that Salmonella strains unable to excise ROD21 display a reduced ability to colonize the liver and spleen. In this work, we determined the kinetics of ROD21 excision in vivo in C57BL/6 mice and its effect on virulence. We quantified bacterial burden and excision frequency in different portions of the digestive tract and internal organs throughout the infection. We observed that the frequency of ROD21 excision was significantly increased in the bacterial population colonizing mesenteric lymph nodes at early stages of the infective cycle, before 48 hours post-infection. In contrast, excision frequency remained very low in the liver and spleen at these stages. Interestingly, excision increased drastically after 48 h post infection, when intestinal re-infection and mortality begun. Moreover, we observed that the inability to excise ROD21 had a negative effect on S. Enteritidis capacity to translocate from the intestine to deeper organs, which correlates with an abnormal transcription of invA in the S. Enteritidis strain unable to excise ROD21. These results suggest that excision of ROD21 is a genetic mechanism required by S. Enteritidis to produce a successful invasion of the intestinal epithelium, a step required to generate systemic infection in mice

    Persistent Salmonella enterica serovar Typhimurium Infection Increases the Susceptibility of Mice to Develop Intestinal Inflammation

    Get PDF
    Chronic intestinal inflammations are triggered by genetic and environmental components. However, it remains unclear how specific changes in the microbiota, host immunity, or pathogen exposure could promote the onset and exacerbation of these diseases. Here, we evaluated whether Salmonella enterica serovar Typhimurium (S. Typhimurium) infection increases the susceptibility to develop intestinal inflammation in mice. Two mouse models were used to evaluate the impact of S. Typhimurium infection: the chemical induction of colitis by dextran sulfate sodium (DSS) and interleukin (IL)-10−/− mice, which develop spontaneous intestinal inflammation. We observed that S. Typhimurium infection makes DSS-treated and IL-10−/− mice more susceptible to develop intestinal inflammation. Importantly, this increased susceptibility is associated to the ability of S. Typhimurium to persist in liver and spleen of infected mice, which depends on the virulence proteins secreted by Salmonella Pathogenicity Island 2-encoded type three secretion system (TTSS-2). Although immunization with a live attenuated vaccine resulted in a moderate reduction of the IL-10−/− mice susceptibility to develop intestinal inflammation due to previous S. Typhimurium infection, it did not prevent bacterial persistence. Our results suggest that persistent S. Typhimurium infection may increase the susceptibility of mice to develop inflammation in the intestine, which could be associated with virulence proteins secreted by TTSS-2

    Image_2_Persistent Salmonella enterica serovar Typhimurium Infection Increases the Susceptibility of Mice to Develop Intestinal Inflammation.tif

    No full text
    <p>Chronic intestinal inflammations are triggered by genetic and environmental components. However, it remains unclear how specific changes in the microbiota, host immunity, or pathogen exposure could promote the onset and exacerbation of these diseases. Here, we evaluated whether Salmonella enterica serovar Typhimurium (S. Typhimurium) infection increases the susceptibility to develop intestinal inflammation in mice. Two mouse models were used to evaluate the impact of S. Typhimurium infection: the chemical induction of colitis by dextran sulfate sodium (DSS) and interleukin (IL)-10<sup>−/−</sup> mice, which develop spontaneous intestinal inflammation. We observed that S. Typhimurium infection makes DSS-treated and IL-10<sup>−/−</sup> mice more susceptible to develop intestinal inflammation. Importantly, this increased susceptibility is associated to the ability of S. Typhimurium to persist in liver and spleen of infected mice, which depends on the virulence proteins secreted by Salmonella Pathogenicity Island 2-encoded type three secretion system (TTSS-2). Although immunization with a live attenuated vaccine resulted in a moderate reduction of the IL-10<sup>−/−</sup> mice susceptibility to develop intestinal inflammation due to previous S. Typhimurium infection, it did not prevent bacterial persistence. Our results suggest that persistent S. Typhimurium infection may increase the susceptibility of mice to develop inflammation in the intestine, which could be associated with virulence proteins secreted by TTSS-2.</p

    Table_1_Persistent Salmonella enterica serovar Typhimurium Infection Increases the Susceptibility of Mice to Develop Intestinal Inflammation.docx

    No full text
    <p>Chronic intestinal inflammations are triggered by genetic and environmental components. However, it remains unclear how specific changes in the microbiota, host immunity, or pathogen exposure could promote the onset and exacerbation of these diseases. Here, we evaluated whether Salmonella enterica serovar Typhimurium (S. Typhimurium) infection increases the susceptibility to develop intestinal inflammation in mice. Two mouse models were used to evaluate the impact of S. Typhimurium infection: the chemical induction of colitis by dextran sulfate sodium (DSS) and interleukin (IL)-10<sup>−/−</sup> mice, which develop spontaneous intestinal inflammation. We observed that S. Typhimurium infection makes DSS-treated and IL-10<sup>−/−</sup> mice more susceptible to develop intestinal inflammation. Importantly, this increased susceptibility is associated to the ability of S. Typhimurium to persist in liver and spleen of infected mice, which depends on the virulence proteins secreted by Salmonella Pathogenicity Island 2-encoded type three secretion system (TTSS-2). Although immunization with a live attenuated vaccine resulted in a moderate reduction of the IL-10<sup>−/−</sup> mice susceptibility to develop intestinal inflammation due to previous S. Typhimurium infection, it did not prevent bacterial persistence. Our results suggest that persistent S. Typhimurium infection may increase the susceptibility of mice to develop inflammation in the intestine, which could be associated with virulence proteins secreted by TTSS-2.</p

    Data_Sheet_1_Persistent Salmonella enterica serovar Typhimurium Infection Increases the Susceptibility of Mice to Develop Intestinal Inflammation.docx

    No full text
    <p>Chronic intestinal inflammations are triggered by genetic and environmental components. However, it remains unclear how specific changes in the microbiota, host immunity, or pathogen exposure could promote the onset and exacerbation of these diseases. Here, we evaluated whether Salmonella enterica serovar Typhimurium (S. Typhimurium) infection increases the susceptibility to develop intestinal inflammation in mice. Two mouse models were used to evaluate the impact of S. Typhimurium infection: the chemical induction of colitis by dextran sulfate sodium (DSS) and interleukin (IL)-10<sup>−/−</sup> mice, which develop spontaneous intestinal inflammation. We observed that S. Typhimurium infection makes DSS-treated and IL-10<sup>−/−</sup> mice more susceptible to develop intestinal inflammation. Importantly, this increased susceptibility is associated to the ability of S. Typhimurium to persist in liver and spleen of infected mice, which depends on the virulence proteins secreted by Salmonella Pathogenicity Island 2-encoded type three secretion system (TTSS-2). Although immunization with a live attenuated vaccine resulted in a moderate reduction of the IL-10<sup>−/−</sup> mice susceptibility to develop intestinal inflammation due to previous S. Typhimurium infection, it did not prevent bacterial persistence. Our results suggest that persistent S. Typhimurium infection may increase the susceptibility of mice to develop inflammation in the intestine, which could be associated with virulence proteins secreted by TTSS-2.</p

    Image_3_Persistent Salmonella enterica serovar Typhimurium Infection Increases the Susceptibility of Mice to Develop Intestinal Inflammation.tif

    No full text
    <p>Chronic intestinal inflammations are triggered by genetic and environmental components. However, it remains unclear how specific changes in the microbiota, host immunity, or pathogen exposure could promote the onset and exacerbation of these diseases. Here, we evaluated whether Salmonella enterica serovar Typhimurium (S. Typhimurium) infection increases the susceptibility to develop intestinal inflammation in mice. Two mouse models were used to evaluate the impact of S. Typhimurium infection: the chemical induction of colitis by dextran sulfate sodium (DSS) and interleukin (IL)-10<sup>−/−</sup> mice, which develop spontaneous intestinal inflammation. We observed that S. Typhimurium infection makes DSS-treated and IL-10<sup>−/−</sup> mice more susceptible to develop intestinal inflammation. Importantly, this increased susceptibility is associated to the ability of S. Typhimurium to persist in liver and spleen of infected mice, which depends on the virulence proteins secreted by Salmonella Pathogenicity Island 2-encoded type three secretion system (TTSS-2). Although immunization with a live attenuated vaccine resulted in a moderate reduction of the IL-10<sup>−/−</sup> mice susceptibility to develop intestinal inflammation due to previous S. Typhimurium infection, it did not prevent bacterial persistence. Our results suggest that persistent S. Typhimurium infection may increase the susceptibility of mice to develop inflammation in the intestine, which could be associated with virulence proteins secreted by TTSS-2.</p

    Limited Heme Oxygenase Contribution to Modulating the Severity of Salmonella enterica serovar Typhimurium Infection

    No full text
    An important virulence trait of Salmonella enterica serovar Typhimurium (S. Typhimurium) is the ability to avoid the host immune response, generating systemic and persistent infections. Host cells play a crucial role in bacterial clearance by expressing the enzyme heme oxygenase 1 (Hmox1), which catalyzes the degradation of heme groups into Fe2+, biliverdin, and carbon monoxide (CO). The role of Hmox1 activity during S. Typhimurium infection is not clear and previous studies have shown contradictory results. We evaluated the effect of pharmacologic modulation of Hmox1 in a mouse model of acute and persistent S. Typhimurium infection by administering the Hmox1 activity inductor cobalt protoporphyrin-IX (CoPP) or inhibitor tin protoporphyrin-IX (SnPP) before infection. To evaluate the molecular mechanism involved, we measured the colocalization of S. Typhimurium and autophagosome and lysosomal markers in macrophages. Administering CoPP reduced the bacterial burden in organs of mice 5 days post-infection, while SnPP-treated mice showed bacterial loads similar to vehicle-treated mice. Furthermore, CoPP reduced bacterial loads when administered after infection in macrophages in vitro and in a persistent infection model of S. Typhimurium in vivo, while tin protoporphyrin-IX (SnPP) treatment resulted in a bacterial burden similar to vehicle-treated controls. However, we did not observe significant differences in co-localization of green fluorescent protein (GFP)-labeled S. Typhimurium with the autophagic vesicles marker microtubule-associated protein 1A/1B-light chain 3 (LC3) and the lysosomal marker lysosomal-associated membrane protein 1 (LAMP-1) in macrophages treated with CoPP. Our results suggest that CoPP can enhance antimicrobial activity in response to Salmonella infection, reducing bacterial dissemination and persistence in mice, in a CO and autophagy- independent manner
    corecore