708 research outputs found

    The quantum optical Josephson interferometer

    Full text link
    The interplay between coherent tunnel coupling and on-site interactions in dissipation-free bosonic systems has lead to many spectacular observations, ranging from the demonstration of number-phase uncertainty relation to quantum phase transitions. To explore the effect of dissipation and coherent drive on tunnel coupled interacting bosonic systems, we propose a device that is the quantum optical analog of a Josephson interferometer. It consists of two coherently driven linear optical cavities connected via a central cavity with a single-photon nonlinearity. The Josephson-like oscillations in the light emitted from the central cavity as a function of the phase difference between two pumping fields can be suppressed by increasing the strength of the nonlinear coupling. Remarkably, we find that in the limit of ultra-strong interactions in the center-cavity, the coupled system maps on to an effective Jaynes-Cummings system with a nonlinearity determined by the tunnel coupling strength. In the limit of a single nonlinear cavity coupled to two linear waveguides, the degree of photon antibunching from the nonlinear cavity provides an excellent measure of the transition to the nonlinear regime where Josephson oscillations are suppressed.Comment: 9 pages, 7 figure

    Electromechanical Quantum Simulators

    Full text link
    Digital quantum simulators are among the most appealing applications of a quantum computer. Here we propose a universal, scalable, and integrated quantum computing platform based on tunable nonlinear electromechanical nano-oscillators. It is shown that very high operational fidelities for single and two qubits gates can be achieved in a minimal architecture, where qubits are encoded in the anharmonic vibrational modes of mechanical nanoresonators, whose effective coupling is mediated by virtual fluctuations of an intermediate superconducting artificial atom. An effective scheme to induce large single-phonon nonlinearities in nano-electromechanical devices is explicitly discussed, thus opening the route to experimental investigation in this direction. Finally, we explicitly show the very high fidelities that can be reached for the digital quantum simulation of model Hamiltonians, by using realistic experimental parameters in state-of-the art devices, and considering the transverse field Ising model as a paradigmatic example.Comment: 14 pages, 8 figure

    Criminal rehabilitation : the impact of religious programming

    Get PDF
    Copyright, Christian Association for Psychological Studies, Inc. Reprinted with permission.In spite of their prevalence in correctional institutions, religious programs have been the subject of limited independent assessment. The purpose of the current study was to examine the outcomes of the Kairos Short Course, a Christian religious course offered to prison inmates that aims to engage participants in examination and meditation on their experiences, as well as the fostering of skills such as forgiveness and empathic responsiveness. A sample of 38 inmates (20 assigned to attend the Kairos Short Course and 18 serving as a waiting-list comparison) at a medium security prison participated in the evaluation and were assessed prior to and following completion of the Course on measures of criminal thinking, empathy, self reflection, treatment readiness, and forgiveness of self and others. No clear evidence of change on any of these measures was found. These results are of interest in the context of the growing need for service providers to demonstrate that their programs are evidence-based and contribute to the community safety goals of most correctional agencies. It is concluded that such results should temper some of the more enthusiastic claims of some providers of religious programs to prisoners that such programs are successful in rehabilitating large numbers of offenders

    The quantum optical Josephson interferometer

    Full text link
    The interplay between coherent tunnel coupling and on-site interactions in dissipation-free bosonic systems has lead to many spectacular observations, ranging from the demonstration of number-phase uncertainty relation to quantum phase transitions. To explore the effect of dissipation and coherent drive on tunnel coupled interacting bosonic systems, we propose a device that is the quantum optical analog of a Josephson interferometer. It consists of two coherently driven linear optical cavities connected via a central cavity with a single-photon nonlinearity. The Josephson-like oscillations in the light emitted from the central cavity as a function of the phase difference between two pumping fields can be suppressed by increasing the strength of the nonlinear coupling. Remarkably, we find that in the limit of ultra-strong interactions in the center-cavity, the coupled system maps on to an effective Jaynes-Cummings system with a nonlinearity determined by the tunnel coupling strength. In the limit of a single nonlinear cavity coupled to two linear waveguides, the degree of photon antibunching from the nonlinear cavity provides an excellent measure of the transition to the nonlinear regime where Josephson oscillations are suppressed.Comment: 9 pages, 7 figure

    Signatures of the super fluid-insulator phase transition in laser driven dissipative nonlinear cavity arrays

    Get PDF
    We analyze the non-equilibrium dynamics of a gas of interacting photons in an array of coupled dissipative nonlinear cavities driven by a pulsed external coherent field. Using a mean-field approach, we show that the system exhibits a phase transition from a Mott-insulator-like to a superfluid regime. For a given single-photon nonlinearity, the critical value of the photon tunneling rate at which the phase transition occurs increases with the increasing photon loss rate. We checked the robustness of the transition by showing its insensitivity to the initial state prepared by the the pulsed excitation. We find that the second-order coherence of cavity emission can be used to determine the phase diagram of an optical many-body system without the need for thermalization.Comment: 4 pages, 4 figure

    Non-equilibrium delocalization-localization transition of photons in circuit QED

    Full text link
    We show that photons in two tunnel-coupled microwave resonators each containing a single superconduct- ing qubit undergo a sharp non-equilibrium delocalization-localization (self-trapping) transition due to strong photon-qubit coupling. We find that dissipation favors the self-trapped regime and leads to the possibility of observing the transition as a function of time without tuning any parameter of the system. Furthermore, we find that self-trapping of photons in one of the resonators (spatial localization) forces the qubit in the opposite resonator to remain in its initial state (energetic localization). This allows for an easy experimental observation of the transition by local read-out of the qubit state.Comment: 4 pages, 5 figure

    Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits

    Full text link
    Resolving quantum many-body problems represents one of the greatest challenges in physics and physical chemistry, due to the prohibitively large computational resources that would be required by using classical computers. A solution has been foreseen by directly simulating the time evolution through sequences of quantum gates applied to arrays of qubits, i.e. by implementing a digital quantum simulator. Superconducting circuits and resonators are emerging as an extremely-promising platform for quantum computation architectures, but a digital quantum simulator proposal that is straightforwardly scalable, universal, and realizable with state-of-the-art technology is presently lacking. Here we propose a viable scheme to implement a universal quantum simulator with hybrid spin-photon qubits in an array of superconducting resonators, which is intrinsically scalable and allows for local control. As representative examples we consider the transverse-field Ising model, a spin-1 Hamiltonian, and the two-dimensional Hubbard model; for these, we numerically simulate the scheme by including the main sources of decoherence. In addition, we show how to circumvent the potentially harmful effects of inhomogeneous broadening of the spin systems
    • …
    corecore