56 research outputs found

    National geohazards mapping in Europe: interferometric analysis of the Netherlands

    Get PDF
    The launch of Copernicus, the largest Earth Observation program to date, is significant due to the regular, reliable and freely accessible data to support space-based geodetic monitoring of physical phenomena that can result in natural hazards. In this study, wide area interferometric synthetic aperture radar (InSAR) capability is demonstrated by processing 436 Copernicus Sentinel-1 C-Band SAR images (May 2015–May 2017) using the Intermittent Small Baseline Subset (ISBAS) method to produce a wide-area-map (WAM) covering the Netherlands and extending into neighbouring areas of Belgium and Germany. Ground deformation velocities from six interferometric stacks, containing over 19 million measurements, were mosaicked together to produce a seamless ISBAS-WAM over some 53,000 km2 achieving a ground coverage of 94%. The retrieval of low-resolution measurements over soft surfaces (i.e. agricultural fields, forests, semi-natural areas and wetlands) afforded by the ISBAS technique was crucial due the dominance of non-urban land cover. Across the WAM, the spatial distribution of deformations concurs with independent sources of data, such as previous persistent scatterer interferometry (PSI) deformation maps, models of subsidence and settlement susceptibility, and quantitatively with GPS measurements over the Groningen gas field. A statistical analysis of the velocities reveals that intermittently coherent measurements in rural areas can provide reliable, additional deformation information with a very high degree of confidence (5σ), much of which is spatially correlated to known deformation features associated with compressible soils, infrastructure, peat oxidation, oil and gas production, salt mining and underground and opencast mining.Remotely derived deformation products, with near complete spatial coverage, provide a powerful tool for mitigation and remediation against adverse geological conditions to help in the protection of assets, property and life. The ISBAS-WAM demonstrates that routine generation of such products on a continental scale is now theoretically achievable, given the recent establishment of the Copernicus programme and the development of state-of-the-art InSAR methods such as ISBAS

    Characterisation of ground motion recording stations in the Groningen gas field

    Get PDF
    The seismic hazard and risk analysis for the onshore Groningen gas field requires information about local soil properties, in particular shear-wave velocity (VS). A fieldwork campaign was conducted at 18 surface accelerograph stations of the monitoring network. The subsurface in the region consists of unconsolidated sediments and is heterogeneous in composition and properties. A range of different methods was applied to acquire in situ VS values to a target depth of at least 30 m. The techniques include seismic cone penetration tests (SCPT) with varying source offsets, multichannel analysis of surface waves (MASW) on Rayleigh waves with different processing approaches, microtremor array, cross-hole tomography and suspension P-S logging. The offset SCPT, cross-hole tomography and common midpoint cross-correlation (CMPcc) processing of MASW data all revealed lateral variations on length scales of several to tens of metres in this geological setting. SCPTs resulted in very detailed VS profiles with depth, but represent point measurements in a heterogeneous environment. The MASW results represent VS information on a larger spatial scale and smooth some of the heterogeneity encountered at the sites. The combination of MASW and SCPT proved to be a powerful and cost-effective approach in determining representative VS profiles at the accelerograph station sites. The measured VS profiles correspond well with the modelled profiles and they significantly enhance the ground motion model derivation. The similarity between the theoretical transfer function from the VS profile and the observed amplification from vertical array stations is also excellent

    Regional sediment deficits in the Dutch lowlands:Implications for long-term land-use options

    Get PDF
    Background, Aim and Scope. Coastal and river plains are the surfaces of depositional systems, to which sediment input is a parameter of key-importance. Their habitation and economic development usually requires protection with dikes, quays, etc., which are effective in retaining floods but have the side effect of impeding sedimentation in their hinterlands. The flood-protected Dutch lowlands (so-called dike-ring areas) have been sediment-starved for up to about a millennium. In addition to this, peat decomposition and soil compaction, brought about by land drainage, have caused significant land subsidence. Sediment deficiency, defined as the combined effect of sediment-starvation and drainage-induced volume losses, has already been substantial in this area, and it is expected to become urgent in view of the forecasted effects of climate change (sea-level rise, intensified precipitation and run-off). We therefore explore this deficiency, compare it with natural (Holocene) and current human sediment inputs, and discuss it in terms of long-term land-use options. Materials and Methods. We use available 3D geological models to define natural sediment inputs to our study area. Recent progress in large-scale modelling of peat oxidation and compaction enables us to address volume loss associated with these processes. Human sediment inputs are based on published minerals statistics. All results are given as first-order approximations. Results. The current sediment deficit in the diked lowlands of the Netherlands is estimated at 136 ± 67 million m3/a. About 85% of this volume is the hypothetical amount of sediment required to keep up with sea-level rise, and 15% is the effect of land drainage (peat decomposition and compaction). The average Holocene sediment input to our study area (based on a total of 145 km3) is -14 million m3/a, and the maximum (millennium-averaged) input ∼26 million m3/a. Historical sediment deficiency has resulted in an unused sediment accommodation space of about 13.3 km3. Net human input of sediment material currently amounts to ∼23 million m3/a. Discussion. As sedimentary processes in the Dutch lowlands have been retarded, the depositional system's natural resilience to sea-level rise is low, and all that is left to cope is human counter-measure. Preserving some sort of status quo with water management solutions may reach its limits in the foreseeable future. The most viable long-term option therefore seems a combination of allowing for more water in open country (anything from flood-buffer zones to open water) and raising lands that are to be built up (enabling their lasting protection). As to the latter, doubling or tripling the use of filling sand in a planned and sustained effort may resolve up to one half of the Dutch sediment deficiency problems in about a century. Conclusions, Recommendations and Perspectives. We conclude that sediment deficiency - past, present and future - challenges the sustainable habitation of the Dutch lowlands. In order to explore possible solutions, we recommend the development of long-term scenarios for the changing lowland physiography, that include the effects of Global Change, compensation measures, costs and benefits, and the implications for long-term land-use options. © 2007 ecomed publishers (Verlagsgruppe Hüthig Jehle Rehm GmbH)

    Measurement of the nuclear modification factor for muons from charm and bottom hadrons in Pb+Pb collisions at 5.02 TeV with the ATLAS detector

    Get PDF
    Heavy-flavour hadron production provides information about the transport properties and microscopic structure of the quark-gluon plasma created in ultra-relativistic heavy-ion collisions. A measurement of the muons from semileptonic decays of charm and bottom hadrons produced in Pb+Pb and pp collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV with the ATLAS detector at the Large Hadron Collider is presented. The Pb+Pb data were collected in 2015 and 2018 with sampled integrated luminosities of 208 mu b(-1) and 38 mu b(-1), respectively, and pp data with a sampled integrated luminosity of 1.17 pb(-1) were collected in 2017. Muons from heavy-flavour semileptonic decays are separated from the light-flavour hadronic background using the momentum imbalance between the inner detector and muon spectrometer measurements, and muons originating from charm and bottom decays are further separated via the muon track's transverse impact parameter. Differential yields in Pb+Pb collisions and differential cross sections in pp collisions for such muons are measured as a function of muon transverse momentum from 4 GeV to 30 GeV in the absolute pseudorapidity interval vertical bar eta vertical bar < 2. Nuclear modification factors for charm and bottom muons are presented as a function of muon transverse momentum in intervals of Pb+Pb collision centrality. The bottom muon results are the most precise measurement of b quark nuclear modification at low transverse momentum where reconstruction of B hadrons is challenging. The measured nuclear modification factors quantify a significant suppression of the yields of muons from decays of charm and bottom hadrons, with stronger effects for muons from charm hadron decays

    A search for an unexpected asymmetry in the production of e+μ− and e−μ+ pairs in proton-proton collisions recorded by the ATLAS detector at root s = 13 TeV

    Get PDF
    This search, a type not previously performed at ATLAS, uses a comparison of the production cross sections for e(+)mu(-) and e(-)mu(+) pairs to constrain physics processes beyond the Standard Model. It uses 139 fb(-1) of proton-proton collision data recorded at root s = 13 TeV at the LHC. Targeting sources of new physics which prefer final states containing e(+)mu(-) and e(-)mu(+), the search contains two broad signal regions which are used to provide model-independent constraints on the ratio of cross sections at the 2% level. The search also has two special selections targeting supersymmetric models and leptoquark signatures. Observations using one of these selections are able to exclude, at 95% confidence level, singly produced smuons with masses up to 640 GeV in a model in which the only other light sparticle is a neutralino when the R-parity-violating coupling lambda(23)(1)' is close to unity. Observations using the other selection exclude scalar leptoquarks with masses below 1880 GeV when g(1R)(eu) = g(1R)(mu c) = 1, at 95% confidence level. The limit on the coupling reduces to g(1R)(eu) = g(1R)(mu c) = 0.46 for a mass of 1420 GeV

    Civilising Globalism: Transnational Norm-Building Networks - A Research Programme

    Full text link

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF
    corecore