8 research outputs found

    Identifying the oxygen evolution mechanism by microkinetic modelling of cyclic voltammograms

    Get PDF
    Electrocatalytic water splitting is currently one of the most promising reactions to produce “green” hydrogen in a decarbonized energy system. Its bottleneck reaction, the oxygen evolution reaction (OER), is catalysed by hydrous iridium, a stable and active catalyst material. Improving the OER requires a better and especially quantitative understanding of the reaction mechanism as well as its kinetics. In this work, we present an experimentally validated microkinetic model that allows to quantify the mechanistic pathways, emerging surface species prior and during the OER, the reaction rates for the single steps and essential thermodynamic properties. Therefore, two mechanisms based on density functional theory and experimental findings are evaluated on which only simulation results of the theory-based one are found to be in full accordance with cyclic voltammograms even at different potential rates and, thus, able to describe the catalytic system. The simulation implies that oxygen is evolving mostly via a fast single site pathway (∗OO → ∗ + O2 ) with an effective reaction rate, which is several orders of magnitude faster compared to the slow dual site (2∗ O → 2∗ + O2) pathway rate. Intermediate states of roughly 7% Ir(III), 25% Ir(IV) and 63% Ir(V) are present at typical OER potentials of 1.6 V vs RHE. We are able to explain counterintuitive experimental findings of a reduced iridium species during highly oxidizing potentials by the kinetic limitation of water adsorption. Although water adsorption is in general thermodynamically favourable, it is kinetically proceeding slower than the electrochemical steps at high potential. In the lower potential range from 0.05 to 1.5 V vs RHE the stepwise oxidation of the iridium is accompanied with van der Waals like ad- and desorption processes, which leads in comparison to Langmuir-type adsorption to a broadened peak shape in the cyclic voltammograms. Overall, our analysis shows that the dynamic microkinetic modelling approach is a powerful tool to analyse catalytic microkinetics in depth and to bridge the gap between thermodynamic calculations and experiments

    Microkinetic Barriers of the Oxygen Evolution on the Oxides of Iridium, Ruthenium and their Binary Mixtures

    Get PDF
    The performance of electrocatalytic water splitting in polymer electrolyte membrane electrolysis is substantially determined by the microkinetic processes of the oxygen evolution reaction (OER). Even highly active catalysts such as the nanoparticulated transition metal oxides IrO2_{2}, RuO2_{2} and their mixtures, Irx_{x}Ru1−x_{1-x}O2_{2}, exhibit overpotentials up to several hundreds of millivolts. The surface of the oxide mixtures Irx_{x}Ru1−x_{1-x}O2_{2} is found to consist of actives sites of both Ir and Ru on which the OER mechanism is processed independently and at different overpotentials. By applying microkinetic modelling and parameterization via cyclic voltammograms we show that there is a correlation between performance and the relative Ir content, that can be explained by two different deprotonation steps. These are in particular the formation of the adsorbate species *OOH on rutile RuO2_{2} and *OO on IrO2_{2}. The respective free reaction energies are quantified to 1.44 eV and 1.58 eV, which are the highest values of the process and thus determining the overpotential. The additional finding of adsorbed oxygen *O covering >40 % of the active sites during the OER suggests that subsequent water adsorption is the major performance limiting step. Finally, a synergetic effect between both active sites on the binary transition metal oxides is identified: the respective other metal lowers the potential determining reaction energy on the Ru or Ir active site. This insight into the surface processes on Ir and Ru binary oxides forms the basis for deeper understanding of the active sites for further OER catalyst development

    Phase- and Surface Composition-Dependent Electrochemical Stability of Ir-Ru Nanoparticles during Oxygen Evolution Reaction

    Get PDF
    The increasing scarcity of iridium (Ir) and its rutile-type oxide (IrO2_{2}), the current state-of-the-art oxygen evolution reaction (OER) catalysts, is driving the transition toward the use of mixed Ir oxides with a highly active yet inexpensive metal (Irx_{x}M1−x_{1-x}O2_{2}). Ruthenium (Ru) has been commonly employed due to its high OER activity although its electrochemical stability in Ir-Ru mixed oxide nanoparticles (Irx_{x}Ru1−x_{1-x}O2_{2} NPs), especially at high relative contents, is rarely evaluated for long-term application as water electrolyzers. In this work, we bridge the knowledge gap by performing a thorough study on the composition- and phase-dependent stability of well-defined Irx_{x}Ru1−x_{1-x}O2_{2} NPs prepared by flame spray pyrolysis under dynamic operating conditions. As-prepared NPs (Irx_{x}Ru1−x_{1-x}Oy_{y}) present an amorphous coral-like structure with a hydrous Ir-Ru oxide phase, which upon post-synthetic thermal treatment fully converts to a rutile-type structure followed by a selective Ir enrichment at the NP topmost surface. It was demonstrated that Ir incorporation into a RuO2_{2} matrix drastically reduced Ru dissolution by ca. 10-fold at the expense of worsening Ir inherent stability, regardless of the oxide phase present. Hydrous Irx_{x}Ru1−x_{1-x}Oy_{y} NPs, however, were shown to be 1000-fold less stable than rutile-type Irx_{x}Ru1−x_{1-x}O2_{2}, where the severe Ru leaching yielded a fast convergence toward the activity of monometallic hydrous IrOy_{y}. For rutile-type Irx_{x}Ru1−x_{1-x}O2_{2}, the sequential start-up/shut-down OER protocol employed revealed a steady-state dissolution for both Ir and Ru, as well as the key role of surface Ru species in OER activity: minimal Ru surface losses (<1 at. %) yielded OER activities for tested Ir0.2_{0.2}Ru0.8_{0.8}O2 equivalent to those of untested Ir0.8_{0.8}Ru0.2_{0.2}O2. Ir enrichment at the NP topmost surface, which mitigates selective subsurface Ru dissolution, is identified as the origin of the NP stabilization. These results suggest Ru-rich Irx_{x}Ru1−x_{1-x}O2_{2} NPs to be viable electrocatalysts for long-term water electrolysis, with significant repercussions in cost reduction

    Microkinetic Analysis of the Oxygen Evolution Performance at Different Stages of Iridium Oxide Degradation

    Get PDF
    The microkinetics of the electrocatalytic oxygen evolution reaction substantially determines the performance in proton-exchange membrane water electrolysis. State-of-the-art nanoparticulated rutile IrO2_{2} electrocatalysts present an excellent trade-off between activity and stability due to the efficient formation of intermediate surface species. To reveal and analyze the interaction of individual surface processes, a detailed dynamic microkinetic model approach is established and validated using cyclic voltammetry. We show that the interaction of three different processes, which are the adsorption of water, one potential-driven deprotonation step, and the detachment of oxygen, limits the overall reaction turnover. During the reaction, the active IrO2_{2} surface is covered mainly by *O, *OOH, and *OO adsorbed species with a share dependent on the applied potential and of 44, 28, and 20% at an overpotential of 350 mV, respectively. In contrast to state-of-the-art calculations of ideal catalyst surfaces, this novel model-based methodology allows for experimental identification of the microkinetics as well as thermodynamic energy values of real pristine and degraded nanoparticles. We show that the loss in electrocatalytic activity during degradation is correlated to an increase in the activation energy of deprotonation processes, whereas reaction energies were marginally affected. As the effect of electrolyte-related parameters does not cause such a decrease, the model-based analysis demonstrates that material changes trigger the performance loss. These insights into the degradation of IrO2_{2} and its effect on the surface processes provide the basis for a deeper understanding of degrading active sites for the optimization of the oxygen evolution performance

    Increased Ir–Ir Interaction in Iridium Oxide during the Oxygen Evolution Reaction at High Potentials Probed by Operando Spectroscopy

    Get PDF
    The structure of IrO2_{2} during the oxygen evolution reaction (OER) was studied by operando X-ray absorption spectroscopy (XAS) at the Ir L3_{3}-edge to gain insight into the processes that occur during the electrocatalytic reaction at the anode during water electrolysis. For this purpose, calcined and uncalcined IrO2_{2} nanoparticles were tested in an operando spectroelectrochemical cell. In situ XAS under different applied potentials uncovered strong structural changes when changing the potential. Modulation excitation spectroscopy combined with XAS enhanced the information on the dynamic changes significantly. Principal component analysis (PCA) of the resulting spectra as well as FEFF9 calculations uncovered that both the Ir L3_{3}-edge energy and the white line intensity changed due to the formation of oxygen vacancies and lower oxidation state of iridium at higher potentials, respectively. The deconvoluted spectra and their components lead to two different OER modes. It was observed that at higher OER potentials, the well-known OER mechanisms need to be modified, which is also associated with the stabilization of the catalyst, as confirmed by in situ inductively coupled plasma mass spectrometry (ICP-MS). At these elevated OER potentials above 1.5 V, stronger Ir–Ir interactions were observed. They were more dominant in the calcined IrO2_{2} samples than in the uncalcined ones. The stronger Ir–Ir interaction upon vacancy formation is also supported by theoretical studies. We propose that this may be a crucial factor in the increased dissolution stability of the IrO2_{2} catalyst after calcination. The results presented here provide additional insights into the OER in acid media and demonstrate a powerful technique for quantifying the differences in mechanisms on different OER electrocatalysts. Furthermore, insights into the OER at a fundamental level are provided, which will contribute to further understanding of the reaction mechanisms in water electrolysis

    Phase- and Surface Composition-Dependent Electrochemical Stability of Ir-Ru Nanoparticles during Oxygen Evolution Reaction

    Get PDF
    The increasing scarcity of iridium (Ir) and its rutile-type oxide (IrO2), the current state-of-the-art oxygen evolution reaction (OER) catalysts, is driving the transition toward the use of mixed Ir oxides with a highly active yet inexpensive metal (IrxM1–xO2). Ruthenium (Ru) has been commonly employed due to its high OER activity although its electrochemical stability in Ir-Ru mixed oxide nanoparticles (IrxRu1–xO2 NPs), especially at high relative contents, is rarely evaluated for long-term application as water electrolyzers. In this work, we bridge the knowledge gap by performing a thorough study on the composition- and phase-dependent stability of well-defined IrxRu1–xO2 NPs prepared by flame spray pyrolysis under dynamic operating conditions. As-prepared NPs (IrxRu1–xOy) present an amorphous coral-like structure with a hydrous Ir-Ru oxide phase, which upon post-synthetic thermal treatment fully converts to a rutile-type structure followed by a selective Ir enrichment at the NP topmost surface. It was demonstrated that Ir incorporation into a RuO2 matrix drastically reduced Ru dissolution by ca. 10-fold at the expense of worsening Ir inherent stability, regardless of the oxide phase present. Hydrous IrxRu1–xOy NPs, however, were shown to be 1000-fold less stable than rutile-type IrxRu1–xO2, where the severe Ru leaching yielded a fast convergence toward the activity of monometallic hydrous IrOy. For rutile-type IrxRu1–xO2, the sequential start-up/shut-down OER protocol employed revealed a steady-state dissolution for both Ir and Ru, as well as the key role of surface Ru species in OER activity: minimal Ru surface losses (<1 at. %) yielded OER activities for tested Ir0.2Ru0.8O2 equivalent to those of untested Ir0.8Ru0.2O2. Ir enrichment at the NP topmost surface, which mitigates selective subsurface Ru dissolution, is identified as the origin of the NP stabilization. These results suggest Ru-rich IrxRu1–xO2 NPs to be viable electrocatalysts for long-term water electrolysis, with significant repercussions in cost reduction
    corecore