30 research outputs found

    Six-month ground-based water vapour raman lidar measurements over Athens, Greece and system validation

    Get PDF
    Water vapour is one of the most important greenhouse gases, since it causes about two third of the natural greenhouse effect of the Earth's atmosphere. To improve the understanding of the role of the water vapour in the atmosphere, extensive water vapour profiles with high spatio-temporal resolution are therefore necessary. A ground-based Raman lidar system is used to perform water vapour measurements in Athens, Greece (37.9°N, 23.6°E, 200 m asi.). Water vapour mixing ratio measurements are retrieved from simultaneous inelastic H2O and N2 Raman backscatter lidar signals at 387 nm (from atmospheric N2) and 407 nm (from H2O). Systematic measurements are performed since September 2006. A new algorithm is used to retrieve water vapour vertical profiles in the lower troposphere (0.5-5 km range height asl.). The lidar observations are complemented with radiosonde measurements. Radiosonde data are obtained daily (at 00:00 UTC and 12:00 UTC) from the Hellenic Meteorological Service (HMS) of Greece which operates a meteorological station at the "Hellinikon" airport (37. 54° N, 23.44° E, 15m asl) in Athens, Greece. First results of the systematic intercomparison between water vapour profiles derived simultaneously by the Raman lidar and by radiosondes are presented and discussed

    Planetary boundary layer height variability over Athens, Greece, based on the synergy of Raman lidar and radiosonde data: application of the Kalman filter and other techniques (2011-2016)

    Get PDF
    The temporal evolution of the Planetary Boundary Layer height over Athens, Greece for a 5-year period (2011-2016) is presented. Using the EOLE Raman lidar system, the range-corrected lidar signals were selected around 12:00 UTC and 00:00 UTC for a total of 332 cases (165 days and 167 nights). The Kalman filter and other techniques were used to determine PBL height. The mean PBL height was found to be around 1617±324 m (12:00 UTC) and 892±130 m (00:00 UTC).Peer ReviewedPostprint (published version

    Vertical Profiles of Aerosol Optical and Microphysical Properties During a Rare Case of Long-range Transport of Mixed Biomass Burning-polluted Dust Aerosols from the Russian Federation-kazakhstan to Athens, Greece

    Full text link
    Multi-wavelength aerosol Raman lidar measurements with elastic depolarization at 532 nm were combined with sun photometry during the HYGRA-CD campaign over Athens, Greece, on May-June 2014. We retrieved the aerosol optical [3 aerosol backscatter profiles (baer) at 355-532-1064 nm, 2 aerosol extinction (aaer) profiles at 355-532 nm and the aerosol linear depolarization ratio (δ) at 532 nm] and microphysical properties [effective radius (reff), complex refractive index (m), single scattering albedo (ω)]. We present a case study of a long distance transport (~3.500-4.000 km) of biomass burning particles mixed with dust from the Russian Federation-Kazakhstan regions arriving over Athens on 21-23 May 2014 (1.7-3.5 km height). On 23 May, between 2-2.75 km we measured mean lidar ratios (LR) of 35 sr (355 nm) and 42 sr (532 nm), while the mean Ångström exponent (AE) aerosol backscatter-related values (355nm/532nm and 532nm/1064nm) were 2.05 and 1.22, respectively; the mean value of δ at 532 nm was measured to be 9%. For that day the retrieved mean aerosol microphysical properties at 2-2.75 km height were: reff=0.26 μm (fine mode), reff=2.15 μm (coarse mode), m=1.36+0.00024i, ω=0.999 (355 nm, fine mode), ω=0.992(355 nm, coarse mode), ω=0.997 (532 nm, fine mode), and ω=0.980 (532 nm, coarse mode)

    Inter-comparison of lidar and ceilometer retrievals for aerosol and planetary boundary layer profiling over Athens, Greece

    Get PDF
    This study presents an inter-comparison of two active remote sensors (lidar and ceilometer) to determine the mixing layer height and structure of the Planetary Boundary Layer (PBL) and to retrieve tropospheric aerosol vertical profiles over Athens, Greece. This inter-comparison was performed under various strongly different aerosol loads/types (urban air pollution, biomass burning and Saharan dust event), implementing two different lidar systems (one portable Raymetrics S.A. lidar system running at 355 nm and one multi-wavelength Raman lidar system running at 355 nm, 532 nm and 1064 nm) and one CL31 Vaisala S.A. ceilometer (running at 910 nm). Spectral conversions of the ceilometer's data were performed using the Ångström exponent estimated by ultraviolet multi-filter radiometer (UV-MFR) measurements. The inter-comparison was based on two parameters: the mixing layer height determined by the presence of the suspended aerosols and the attenuated backscatter coefficient. Additionally, radiosonde data were used to derive the PBL height. In general, a good agreement was found between the ceilometer and the lidar techniques in both inter-compared parameters in the height range from 500 m to 5000 m, while the limitations of each instrument are also examined

    Lower-free tropospheric ozone dial measurements over Athens, Greece

    No full text
    A compact ozone differential absorption lidar (DIAL) was implemented at the Laboratory of Laser Remote Sensing of the National Technical University of Athens (NTUA), in Athens, Greece. The DIAL system is based on a Nd:YAG laser emitting at 266 nm. A high-pressure Raman cell, filled with D2, was used to generate the λON and λOFF laser wavelength pairs (i.e., 266-289 nm and 289-316 nm, respectively) based on the Stimulated Raman Scattering (SRS) effect. The system was run during daytime and nighttime conditions to obtain the vertical profile of tropospheric ozone in the Planetary Boundary Layer (PBL) and the adjacent free troposphere

    Lower-free tropospheric ozone dial measurements over Athens, Greece

    No full text
    A compact ozone differential absorption lidar (DIAL) was implemented at the Laboratory of Laser Remote Sensing of the National Technical University of Athens (NTUA), in Athens, Greece. The DIAL system is based on a Nd:YAG laser emitting at 266 nm. A high-pressure Raman cell, filled with D2, was used to generate the λON and λOFF laser wavelength pairs (i.e., 266-289 nm and 289-316 nm, respectively) based on the Stimulated Raman Scattering (SRS) effect. The system was run during daytime and nighttime conditions to obtain the vertical profile of tropospheric ozone in the Planetary Boundary Layer (PBL) and the adjacent free troposphere

    First water vapor measurement over Athens, Greece, obtained by a combined Raman-elastic backscatter lidar system

    No full text
    Water vapor is one of the most important greenhouse gases, since it causes about two third of the natural greenhouse effect of the Earth's atmosphere. To improve the understanding of the role of the water vapor in the atmosphere, extensive water vapor profiles with high spatio-temporal resolution are, therefore, necessary. A recently install ground-based Raman lidar system is used to perform systematic water vapor measurements in the lower troposphere (500-5000 m asl.) over Athens, Greece (37.9°N, 23.6°E, 200 m asl.) since September 2006. Water vapor mixing ratio measurements are retrieved from simultaneous inelastic H2O and N2 Raman backscatter lidar signals at 387 nm (from atmospheric N2) and 407 nm (from H2O). The lidar observations are intercompared with radiosonde data obtained at the "Hellinikon" airport (37. 54° N, 23.44° E, 15m asl.) by the Hellenic Meteorological Service (HMS). First preliminary results of the systematic intercomparison between water vapor profiles derived, simultaneously, by our Raman lidar and by the HMS radiosondes are presented and show that the absolute differences generally remain less than 10% up to 5000 m height. Selected cases of water vapor vertical distributions in the troposphere are presented extensively and discussed, in conjunction with water vapor data obtained by the AIRS spaceborn sensors

    Exploitation of Multi-Band Lidar for the Classification of Free-Flying Migratory Birds : A Pilot Study over Athens, Greece

    No full text
    A multi-wavelength lidar system was used to detect free-flying birds passing over Athens, Greece. The location is strategically located in one of the important migratory corridors for birds migrating between Europe and Africa. Multiwavelength aerosol lidars are operated regularly across Europe in the frame of EARLINET. Here, the feasibility of using this existing infrastructure for assessing fluxes of migratory birds is explored. The backscattered lidar signals were detected at three elastic bands and one Raman band. The monitoring was extended over a period of three months covering predominantly the summer and early autumn period during which approximately 100 hours of lidar data was gathered

    Exploitation of an atmospheric lidar network node in single-shot mode for the classification of aerofauna

    No full text
    The migration of aerofauna is a seasonal phenomenon of global scale, engaging billions of individuals in long-distance movements every year. Multiband lidar systems are commonly employed for the monitoring of aerosols and atmospheric gases, and a number of systems are operated regularly across Europe in the framework of the European Aerosol Lidar Network (EARLINET). This work examines the feasibility of utilizing EARLINET for the monitoring and classification of migratory fauna based on their pigmentation. An EARLINET Raman lidar system in Athens transmits laser pulses in three bands. By installing a four-channel digital oscilloscope on the system, the backscattered light from single-laser shots is measured. Roughly 100 h of data were gathered in the summer of 2013. The data were examined for aerofauna observations, and a total of 1735 observations interpreted as airborne organisms intercepting the laser beam were found during the study period in July to August 2013. The properties of the observations were analyzed spectrally and intercompared. A spectral multimodality that could be related to different observed species is shown. The system used in this pilot study is located in Athens, Greece. It is concluded that monitoring aerial migration using it and other similar systems is feasible with minor modifications, and that in-flight species classification could be possible
    corecore