37 research outputs found

    Coastal Sea Level Monitoring in the Mediterranean and Black Seas

    Get PDF
    Spanning over a century, a traditional way to monitor sea level variability by tide gauges is – in combination with modern observational techniques like satellite altimetry – an inevitable ingredient in sea level studies over the climate scales and in coastal seas. The development of the instrumentation, remote data acquisition, processing and archiving in last decades allowed for extending the applications towards a variety of users and coastal hazard managers. The Mediterranean and Black50 seas are an example for such a transition – while having a long tradition for sea level observations with several records spanning over a century, the number of modern tide gauge stations are growing rapidly, with data available both in real-time and as a research product at different time resolutions. As no comprehensive survey of the tide gauge networks has been carried out recently in these basins, the aim of this paper is to map the existing coastal sea level monitoring infrastructures and the respective data availability. The survey encompasses description of major monitoring networks in the Mediterranean and Black55 seas and their characteristics, including the type of sea level sensors, measuring resolutions, data availability and existence of ancillary measurements, altogether collecting information about 236 presently operational tide gauge stations. The availability of the Mediterranean and Black seas sea level data in the global and European sea level repositories has been also screened and classified following their sampling interval and level of quality-check, pointing to the necessity of harmonization of the data available with different metadata and series at different repositories. Finally, an assessment of the networks’ capabilities60 for their usage in different sea level applications has been done, with recommendations that might mitigate the bottlenecks and assure further development of the networks in a coordinated way, being that more necessary in the era of the human-induced climate changes and the sea level ris

    Modeling the buoyancy-driven Black Sea Water outflow into the North Aegean Sea

    Get PDF
    A three-dimensional numerical model was applied to simulate the Black Sea Water (BSW) outflux and spreading over the North Aegean Sea, and its impact on circulation and stratification–mixing dynamics. Model results were validated against satellite-derived sea surface temperature and in-situ temperature and salinity profiles. Further, the model results were post-processed in terms of the potential energy anomaly, ϕ, analyzing the factors contributing to its change. It occurs that BSW contributes significantly on the Thracian Sea water column stratification, but its signal reduces in the rest of the North Aegean Sea. The BSW buoyancy flux contributed to the change of ϕ in the Thracian Sea by 1.23 × 10−3 W m−3 in the winter and 7.9 × 10−4 W m−3 in the summer, significantly higher than the corresponding solar heat flux contribution (1.41 × 10−5 W m−3 and 7.4 × 10−5 W m−3, respectively). Quantification of the ϕ-advective term crossing the north-western BSW branch (to the north of Lemnos Island), depicted a strong non-linear relation to the relative vorticity of Samothraki Anticyclone. Similar analysis for the south-western branch illustrated a relationship between the ϕ-advective term sign and the relative vorticity in the Sporades system. The ϕ-mixing term increases its significance under strong winds (>15 m s−1), tending to destroy surface meso-scale eddies

    Dynamics of Water, Salt, and Nutrients Exchange at the Inlets of Three Coastal Lagoons

    No full text
    The intertidal patterns at the inlet of three coastal lagoons (Agiasma, Porto Lagos, and Xirolimni) in Northern Greece were investigated by combining in situ samplings and computational efforts. These lagoons are Mediterranean, microtidal coastal systems, connected with the adjacent open sea (Thracian Sea) through their inlet canals and are highly affected by the lagoon–sea exchange processes. Limited freshwater enters their basins, mostly due to precipitation and agricultural drainage. An intense monitoring program of water flow and quality at the mouth of the three lagoons was carried out, aiming to quantify the transport mechanisms of water, salt, and nutrients across the inlet canal under different tidal/meteorological conditions. Ebb currents were recorded higher than flood currents, and the temporal variability of the longitudinal velocity was characterized by asymmetries. Residual currents were important to the water exchange, with the Eulerian water, salt, and nutrient fluxes being an order of magnitude larger than the Stokes drift. Eulerian transport and tidal pumping are considered as important mechanisms for salt and nutrients exchange through the inlets. The return flow factor varied from 1 to 17.5% of the water exiting the lagoons in ebb, while the residence time ranged from 0.7 days to 4.2 days

    Oil Spill Modeling: A Critical Review on Current Trends, Perspectives, and Challenges

    No full text
    Several oil spill simulation models exist in the literature, which are used worldwide to simulate the evolution of an oil slick created from marine traffic, petroleum production, or other sources. These models may range from simple parametric calculations to advanced, new-generation, operational, three-dimensional numerical models, coupled to meteorological, hydrodynamic, and wave models, forecasting in high-resolution and with high precision the transport and fate of oil. This study presents a review of the transport and oil weathering processes and their parameterization and critically examines eighteen state-of-the-art oil spill models in terms of their capacity (a) to simulate these processes, (b) to consider oil released from surface or submerged sources, (c) to assimilate real-time field data for model initiation and forcing, and (d) to assess uncertainty in the produced predictions. Based on our review, the most common oil weathering processes involved are spreading, advection, diffusion, evaporation, emulsification, and dispersion. The majority of existing oil spill models do not consider significant physical processes, such as oil dissolution, photo-oxidation, biodegradation, and vertical mixing. Moreover, timely response to oil spills is lacking in the new generation of oil spill models. Further improvements in oil spill modeling should emphasize more comprehensive parametrization of oil dissolution, biodegradation, entrainment, and prediction of oil particles size distribution following wave action and well blow outs

    Coupling Hydrodynamic and Energy Production Models for Salinity Gradient Energy Assessment in a Salt-Wedge Estuary (Strymon River, Northern Greece)

    No full text
    Salinity gradient energy (SGE) plants generate power from the mixing of salt water and fresh water using advanced membrane systems. In the Strymon River, under low-flow conditions, a salt wedge is formed, developing a two-layer stratified system, which could be used to extract SGE. In this paper, a novel study was implemented by coupling a 3D hydrodynamic model simulating the salt wedge flow, with the SGE model which assesses the net energy produced by a 1 MW SGE plant. Two scenarios were followed: (a) the optimal scenario, operating throughout the year by mixing salt water from the sea (38.1 g/L) and fresh water (0.1 g/L) from the river to produce 4.15 GWh/yr, and (b) the seasonal scenario, utilizing the salinity difference of the salt wedge. Results show that the daily net SGE production varies between 0.30 and 10.90 MWh/day, in accordance with the salinity difference (ΔSsw ~15–30 g/L). Additionally, a retrospective assessment (from 1981 to 2010) of the annual and seasonal net energy production was conducted. This analysis illustrates that the salt-wedge formation (spring to late summer) coincides with the period of increased regional electricity demand. In the future, the emerging SGE could serve as a decentralized renewable energy source, enhancing energy security in the region

    Coupling Hydrodynamic and Energy Production Models for Salinity Gradient Energy Assessment in a Salt-Wedge Estuary (Strymon River, Northern Greece)

    No full text
    Salinity gradient energy (SGE) plants generate power from the mixing of salt water and fresh water using advanced membrane systems. In the Strymon River, under low-flow conditions, a salt wedge is formed, developing a two-layer stratified system, which could be used to extract SGE. In this paper, a novel study was implemented by coupling a 3D hydrodynamic model simulating the salt wedge flow, with the SGE model which assesses the net energy produced by a 1 MW SGE plant. Two scenarios were followed: (a) the optimal scenario, operating throughout the year by mixing salt water from the sea (38.1 g/L) and fresh water (0.1 g/L) from the river to produce 4.15 GWh/yr, and (b) the seasonal scenario, utilizing the salinity difference of the salt wedge. Results show that the daily net SGE production varies between 0.30 and 10.90 MWh/day, in accordance with the salinity difference (ΔSsw ~15–30 g/L). Additionally, a retrospective assessment (from 1981 to 2010) of the annual and seasonal net energy production was conducted. This analysis illustrates that the salt-wedge formation (spring to late summer) coincides with the period of increased regional electricity demand. In the future, the emerging SGE could serve as a decentralized renewable energy source, enhancing energy security in the region

    Denier/believer ratio, female/male ratio, mean sentiment, and average text aggressiveness per topic.

    No full text
    Denier/believer ratio, female/male ratio, mean sentiment, and average text aggressiveness per topic.</p
    corecore