568 research outputs found

    Cavity QED with high-Q whispering gallery modes

    Get PDF
    We report measurements of cavity-QED effects for the radiative coupling of atoms in a dilute vapor to the external evanescent field of a whispering-gallery mode (WGM) in a fused silica microsphere. The high Q (5 x 10^(7)), small mode volume (10^(-8) cm^(3)), and unusual symmetry of the microcavity evanescent field enable velocity-selective interactions between fields with photon number of order unity in the WGM and (N) over bar(T) similar to 1 atoms in the surrounding vapor

    Nonlinear interactions with an ultrahigh flux of broadband entangled photons

    Full text link
    We experimentally demonstrate sum-frequency generation (SFG) with entangled photon-pairs, generating as many as 40,000 SFG photons per second, visible even to the naked eye. The nonclassical nature of the interaction is exhibited by a linear intensity-dependence of the nonlinear process. The key element in our scheme is the generation of an ultrahigh flux of entangled photons while maintaining their nonclassical properties. This is made possible by generating the down-converted photons as broadband as possible, orders of magnitude wider than the pump. This approach is readily applicable for other nonlinear interactions, and may be applicable for various quantum-measurement tasks.Comment: 4 pages, 2 figures, Accepted to Phys. Rev. Let

    Delta-like and gtl2 are reciprocally expressed, differentially methylated linked imprinted genes on mouse chromosome 12

    Get PDF
    AbstractThe distal portion of mouse chromosome 12 is imprinted. To date, however, Gtl2 is the only imprinted gene identified on chromosome 12. Gtl2 encodes multiple alternatively spliced transcripts with no apparent open reading frame. Using conceptuses with maternal or paternal uniparental disomy for chromosome 12 (UPD12), we found that Gtl2 is expressed from the maternal allele and methylated at the 5â€Č end of the silent paternal allele. A reciprocally imprinted gene, Delta-like (Dlk), with homology to genes involved in the Notch signalling pathway was identified 80kb upstream of Gtl2. Dlk was expressed exclusively from the paternal allele in both the embryo and placenta, but the CpG-island promoter of Dlk was completely unmethylated on both parental alleles. Rather, a paternally methylated region was identified in the last exon of the active Dlk allele. The proximity, reciprocal imprinting and methylation in this domain are reminiscent of the co-ordinately regulated Igf2–H19 imprinted domain on mouse chromosome 7. Like H19 and Igf2, Gtl2 and Dlk were found to be co-expressed in the same tissues throughout development, though not after birth. These results have implications for the regulation, function and evolution of imprinted domains

    Assessing the acoustic behaviour of Anopheles gambiae (s.l.) dsxF mutants: implications for vector control

    Get PDF
    BACKGROUND: Release of gene-drive mutants to suppress Anopheles mosquito reproduction is a promising method of malaria control. However, many scientific, regulatory and ethical questions remain before transgenic mosquitoes can be utilised in the field. At a behavioural level, gene-drive carrying mutants should be at least as sexually attractive as the wildtype populations they compete against, with a key element of Anopheles copulation being acoustic courtship. We analysed sound emissions and acoustic preference in a doublesex mutant previously used to collapse Anopheles gambiae (s.l.) cages. METHODS: Anopheles rely on flight tones produced by the beating of their wings for acoustic mating communication. We assessed the impact of disrupting a female-specific isoform of the doublesex gene (dsxF) on the wing beat frequency (WBF; measured as flight tone) of males (XY) and females (XX) in homozygous dsxF- mutants (dsxF-/-), heterozygous dsxF- carriers (dsxF+/-) and G3 dsxF+ controls (dsxF+/+). To exclude non-genetic influences, we controlled for temperature and wing length. We used a phonotaxis assay to test the acoustic preferences of mutant and control mosquitoes. RESULTS: A previous study showed an altered phenotype only for dsxF-/- females, who appear intersex, suggesting that the female-specific dsxF allele is haplosufficient. We identified significant, dose-dependent increases in the WBF of both dsxF-/- and dsxF+/- females compared to dsxF+/+ females. All female WBFs remained significantly lower than male equivalents, though. Males showed stronger phonotactic responses to the WBFs of control dsxF+/+ females than to those of dsxF+/- and dsxF-/- females. We found no evidence of phonotaxis in any female genotype. No male genotypes displayed any deviations from controls. CONCLUSIONS: A prerequisite for anopheline copulation is the phonotactic attraction of males towards female flight tones within mating swarms. Reductions in mutant acoustic attractiveness diminish their mating efficiency and thus the efficacy of population control efforts. Caged population assessments may not successfully reproduce natural mating scenarios. We propose to amend existing testing protocols to better reflect competition between mutants and target populations. Our findings confirm that dsxF disruption has no effect on males; for some phenotypic traits, such as female WBFs, the effects of dsxF appear dose-dependent rather than haplosufficient

    Teleportation of continuous quantum variables

    Get PDF
    A particularly startling discovery by Bennett et al. is the possibility for teleportation of a quantum state, whereby an unknown state of a spin-1/2 particle is transported by Alice from a sending station to Bob at a receiving terminal by conveying 2 bits of classical information. Beyond the context of dichotomic variables, Vaidman has analyzed teleportation of the wave function of a one-dimensional particle in a beautiful variation of the original EPR paradox. Here we extend Vaidman's analysis to incorporate finite (nonsingular) degrees of correlation among the relevant particles

    Coupling of effective one-dimensional two-level atoms to squeezed light

    Full text link
    A cavity QED system is analyzed which duplicates the dynamics of a two-level atom in free space interacting exclusively with broadband squeezed light. We consider atoms in a three or four-level Lambda-configuration coupled to a high-finesse optical cavity which is driven by a squeezed light field. Raman transitions are induced between a pair of stable atomic ground states via the squeezed cavity mode and coherent driving fields. An analysis of the reduced master equation for the atomic ground states shows that a three-level atomic system has insufficient parameter flexibility to act as an effective two-level atom interacting exclusively with a squeezed reservoir. However, the inclusion of a fourth atomic level, coupled dispersively to one of the two ground states by an auxiliary laser field, introduces an extra degree of freedom and enables the desired interaction to be realised. As a means of detecting the reduced quadrature decay rate of the effective two-level system, we examine the transmission spectrum of a weak coherent probe field incident upon the cavity

    Observation of Two-Photon Excitation for Three-Level Atoms in a Squeezed Vacuum

    Get PDF
    The two-photon transition (6S(sub 1/2) yields 6D(sub 5/2)) of atomic Cesium is investigated for excitation with squeezed vacuum generated via nondegenerate parametric down conversion. The two-photon excitation rate (R) is observed to have a non-quadratic dependence of R = aI(exp 2) + bI on the incident photon flux (I), reflecting the nonclassical correlations of the squeezed vacuum field

    Mimicking a Squeezed Bath Interaction: Quantum Reservoir Engineering with Atoms

    Get PDF
    The interaction of an atomic two-level system and a squeezed vacuum leads to interesting novel effects in atomic dynamics, including line narrowing in resonance fluorescence and absorption spectra, and a suppressed (enhanced) decay of the in-phase and out-of phase component of the atomic polarization. On the experimental side these predictions have so far eluded observation, essentially due to the difficulty of embedding atoms in a 4 pi squeezed vacuum. In this paper we show how to ``engineer'' a squeezed-bath-type interaction for an effective two-level system. In the simplest example, our two-level atom is represented by the two ground levels of an atom with angular momentum J=1/2 -> J=1/2 transition (a four level system) which is driven by (weak) laser fields and coupled to the vacuum reservoir of radiation modes. Interference between the spontaneous emission channels in optical pumping leads to a squeezed bath type coupling, and thus to symmetry breaking of decay on the Bloch sphere. With this system it should be possible to observe the effects predicted in the context of squeezed bath - atom interactions. The laser parameters allow one to choose properties of the squeezed bath interaction, such as the (effective) photon number expectation number N and the squeezing phase phi. We present results of a detailed analytical and numerical study.Comment: 24 pages, 8 figure

    Hitting the right note at the right time: Circadian control of audibility in Anopheles mosquito mating swarms is mediated by flight tones

    Get PDF
    Mating swarms of malaria mosquitoes form every day at sunset throughout the tropical world. They typically last less than 30 minutes. Activity must thus be highly synchronized between the sexes. Moreover, males must identify the few sporadically entering females by detecting the females’ faint flight tones. We show that the Anopheles circadian clock not only ensures a tight synchrony of male and female activity but also helps sharpen the males’ acoustic detection system: By raising their flight tones to 1.5 times the female flight tone, males enhance the audibility of females, specifically at swarm time. Previously reported “harmonic convergence” events are only a random by-product of the mosquitoes’ flight tone variance and not a signature of acoustic interaction between males and females. The flight tones of individual mosquitoes occupy narrow, partly non-overlapping frequency ranges, suggesting that the audibility of individual females varies across males
    • 

    corecore