11 research outputs found

    Public access defibrillation: Suppression of 16.7 Hz interference generated by the power supply of the railway systems

    Get PDF
    BACKGROUND: A specific problem using the public access defibrillators (PADs) arises at the railway stations. Some countries as Germany, Austria, Switzerland, Norway and Sweden are using AC railroad net power-supply system with rated 16.7 Hz frequency modulated from 15.69 Hz to 17.36 Hz. The power supply frequency contaminates the electrocardiogram (ECG). It is difficult to be suppressed or eliminated due to the fact that it considerably overlaps the frequency spectra of the ECG. The interference impedes the automated decision of the PADs whether a patient should be (or should not be) shocked. The aim of this study is the suppression of the 16.7 Hz interference generated by the power supply of the railway systems. METHODS: Software solution using adaptive filtering method was proposed for 16.7 Hz interference suppression. The optimal performance of the filter is achieved, embedding a reference channel in the PADs to record the interference. The method was tested with ECGs from AHA database. RESULTS: The method was tested with patients of normal sinus rhythms, symptoms of tachycardia and ventricular fibrillation. Simulated interference with frequency modulation from 15.69 Hz to 17.36 Hz changing at a rate of 2% per second was added to the ECGs, and then processed by the suggested adaptive filtering. The method totally suppresses the noise with no visible distortions of the original signals. CONCLUSION: The proposed adaptive filter for noise suppression generated by the power supply of the railway systems has a simple structure requiring a low level of computational resources, but a good reference signal as well

    On the (Non)-Integrability of KdV Hierarchy with Self-consistent Sources

    Get PDF
    Non-holonomic deformations of integrable equations of the KdV hierarchy are studied by using the expansions over the so-called "squared solutions" (squared eigenfunctions). Such deformations are equivalent to perturbed models with external (self-consistent) sources. In this regard, the KdV6 equation is viewed as a special perturbation of KdV equation. Applying expansions over the symplectic basis of squared eigenfunctions, the integrability properties of the KdV hierarchy with generic self-consistent sources are analyzed. This allows one to formulate a set of conditions on the perturbation terms that preserve the integrability. The perturbation corrections to the scattering data and to the corresponding action-angle variables are studied. The analysis shows that although many nontrivial solutions of KdV equations with generic self-consistent sources can be obtained by the Inverse Scattering Transform (IST), there are solutions that, in principle, can not be obtained via IST. Examples are considered showing the complete integrability of KdV6 with perturbations that preserve the eigenvalues time-independent. In another type of examples the soliton solutions of the perturbed equations are presented where the perturbed eigenvalue depends explicitly on time. Such equations, however in general, are not completely integrable.Comment: 16 pages, no figures, LaTe

    An Improvement of Sendov's Estimation for Parametric Approximation of Partially Analytic Functions

    No full text
    [Iliev Georgi L.; Илиев Георги Л.

    Parametric Approximation Of Piecewise Analytic Functions

    No full text
    [Popov Vasil A.; Popov V.; Popov Vassil A.; Попов Васил А.]; [Iliev Georgi L.; Илиев Георги Л.

    Partially Monotone Aproximation of Differentiable Functions

    No full text
    [Iliev Georgi L.; Илиев Георги Л.]; [Trifonova Mariana T.; Трифонова Мариана Т.
    corecore