2 research outputs found

    Validation of a novel instrumentation (FlexOmega system) measuring oar bending moments on-water in rowing

    Get PDF
    Quantifying rowing performance can facilitate control of training load or assessment of skill level. Accordingly, the FlexOmega system was developed, which records the bending moment of the oar. This work aimed to validate this new instrumentation during a dynamic load case. Two force profiles were first derived from bending moments acquired during on-water rowing (one at race pace, one at training pace). These force profiles were then used to repeatedly load the instrumented oar on a newly developed test bench. To ultimately elaborate how precision and accuracy determined on the test bench affects everyday training, i.e., whether practitioners can reasonably use the FlexOmega system, the measurement variability observed on the test bench was related to the measurement variability seen for on-water measurements. On the test bench (featuring a mean precision of 99% and mean accuracy of 95%), a mean error of 3 Nm (mean precision: 98%, mean accuracy: 97%) was determined for the FlexOmega system for the force profile A characterised by bending moments of up to 300 Nm (racing simulated, 37 strokes per minute). For the force profile B with lower stroke rate and less force (21 strokes per minute, up to 150 Nm), the mean error was 2 Nm (mean precision: 98%, mean accuracy: 97%). The measurement variability observed on the test bench was on average for the two force profiles 30% (profile A) and 15% (profile B) of the measurement variability that occurred during on-water rowing. We conclude that improving the measurement characteristics of the instrumentation would hardly result in any practical benefit as on-water measurements seem mainly to be influenced by the rower’s skill level and environmental condition. Thus, the FlexOmega system can be used to control training intensity or to evaluate rowing performance. In addition, the presented approach for elaborating measurement characteristics could contribute to

    Structural integrity : yesterday - today - tomorrow

    No full text
    Early airplanes were designed using purely static conditions and mainly tested only with simple wing tests. But despite the significant advances in design, manufacturing and testing capabilities, structural failures may still occur. Thus new concepts are required to ensure safe operations over the lifetime of an airframe. In 1952 Juerg Branger developed a concept for a fatigue simulator at the Federal Swiss Aircraft Factory (F+W). The Pilatus P3 trainer became the first airplane to be tested in Emmen, Switzerland to demonstrate the safety of the airframe over a lifetime of 2500 FH. This first test demonstrated the importance of full scale fatigue tests to ensure the structural integrity of the airframe. Due to the intense usage of the fighters deployed by the Swiss Air Force, further full scale fatigue tests were undertaken on the Venom, the Mirage III, and the F/A-18. As the complexity of the materials used in modern aircraft design increases, more and more analysis is being taken over by highly sophisticated software and test procedures. Structural integrity is still an important means to ensure safe operations in aviation for all types of airplanes
    corecore