2,393 research outputs found

    Local-Ansatz Approach with Momentum Dependent Variational Parameters to Correlated Electron Systems

    Full text link
    A new wavefunction which improves the Gutzwiller-type local ansatz method has been proposed to describe the correlated electron system. The ground-state energy, double occupation number, momentum distribution function, and quasiparticle weight have been calculated for the half-filled band Hubbard model in infinite dimensions. It is shown that the new wavefunction improves the local-ansatz approach (LA) proposed by Stollhoff and Fulde. Especially, calculated momentum distribution functions show a reasonable momentum dependence. The result qualitatively differs from those obtained by the LA and the Gutzwiller wavefunction. Furthermore, the present approach combined with the projection operator method CPA is shown to describe quantitatively the excitation spectra in the insulator regime as well as the critical Coulomb interactions for a gap formation in infinite dimensions.Comment: To be published in Phys. Soc. Jpn. 77 No.11 (2008

    The Finite Temperature Mott Transition in the Hubbard Model in Infinite Dimensions

    Full text link
    We study the second order finite temperature Mott transition point in the fully frustrated Hubbard model at half filling, within Dynamical Mean Field Theory. Using quantum Monte Carlo simulations we show the existence of a finite temperature second order critical point by explicitly demonstrating the existence of a divergent susceptibility as well as by finding coexistence in the low temperature phase. We determine the location of the finite temperature Mott critical point in the (U,T) plane. Our study verifies and quantifies a scenario for the Mott transition proposed in earlier studies (Reviews of Modern Physics 68, 13, 1996) of this problem.Comment: 4 RevTex pages, uses epsf, 2 figure

    Density of states near the Mott-Hubbard transition in the limit of large dimensions

    Full text link
    The zero temperature Mott-Hubbard transition as a function of the Coulomb repulsion U is investigated in the limit of large dimensions. The behavior of the density of states near the transition at U=U_c is analyzed in all orders of the skeleton expansion. It is shown that only two transition scenarios are consistent with the skeleton expansion for U<U_c: (i) The Mott-Hubbard transition is "discontinuous" in the sense that in the density of states finite spectral weight is redistributed at U_c. (ii) The transition occurs via a point at U=U_c where the system is neither a Fermi liquid nor an insulator.Comment: 4 pages, 1 figure; revised version accepted for publication in Phys. Rev. Let

    Mott transition at large orbital degeneracy: dynamical mean-field theory

    Full text link
    We study analytically the Mott transition of the N-orbital Hubbard model using dynamical mean-field theory and a low-energy projection onto an effective Kondo model. It is demonstrated that the critical interaction at which the insulator appears (Uc1) and the one at which the metal becomes unstable (Uc2) have different dependence on the number of orbitals as the latter becomes large: Uc1 ~ \sqrt{N} while Uc2 ~ N. An exact analytical determination of the critical coupling Uc2/N is obtained in the large-N limit. The metallic solution close to this critical coupling has many similarities at low-energy with the results of slave boson approximations, to which a comparison is made. We also discuss how the critical temperature associated with the Mott critical endpoint depends on the number of orbitals.Comment: 13 pages. Minor changes in V

    Landau Theory of the Finite Temperature Mott Transition

    Full text link
    In the context of the dynamical mean-field theory of the Hubbard model, we identify microscopically an order parameter for the finite temperature Mott endpoint. We derive a Landau functional of the order parameter. We then use the order parameter theory to elucidate the singular behavior of various physical quantities which are experimentally accessible.Comment: 4 pages, 2 figure

    k-dependent spectrum and optical conductivity near metal-insulator transition in multi-orbital Hubbard bands

    Full text link
    We apply the dynamical mean field theory (DMFT) in the iterative perturbation theory(IPT) to doubly degenerate eg bands and triply degenerate tg bands on a simple cubic lattice and calculate the spectrum and optical conductivity in arbitrary electron occupation. The spectrum simultaneously shows the effects of multiplet structure and DMFT together with the electron ionization and affinity levels of different electron occupations, coherent peaks at the Fermi energy in the metallic phase and a gap at an integer filling of electrons for sufficiently large Coulomb U. We also calculate the critical value of the Coulomb U for degenerate orbitals.Comment: 8 pages, 6 figure

    Suppressed antinodal coherence with a single d-wave superconducting gap leads to two energy scales in underdoped cuprates

    Full text link
    Conventional superconductors are characterized by a single energy scale, the superconducting gap, which is proportional to the critical temperature Tc . In hole-doped high-Tc copper oxide superconductors, previous experiments have established the existence of two distinct energy scales for doping levels below the optimal one. The origin and significance of these two scales are largely unexplained, although they have often been viewed as evidence for two gaps, possibly of distinct physical origins. By measuring the temperature dependence of the electronic Raman response of Bi2Sr2CaCu2O8+d (Bi-2212) and HgBa2CuO4+d (Hg-1201) crystals with different doping levels, we establish that these two scales are associated with coherent excitations of the superconducting state which disappears at Tc. Using a simple model, we show that these two scales do not require the existence of two gaps. Rather, a single d-wave superconducting gap with a loss of Bogoliubov quasiparticle spectral weight in the antinodal region is shown to reconcile spectroscopic and transport measurements.Comment: 3 figure

    Semiclassical Analysis of Extended Dynamical Mean Field Equations

    Full text link
    The extended Dynamical Mean Field Equations (EDMFT) are analyzed using semiclassical methods for a model describing an interacting fermi-bose system. We compare the semiclassical approach with the exact QMC (Quantum Montecarlo) method. We found the transition to an ordered state to be of the first order for any dimension below four.Comment: RevTex, 39 pages, 16 figures; Appendix C added, typos correcte

    Thermoelectric Response Near the Density Driven Mott Transition

    Full text link
    We investigate the thermoelectric response of correlated electron systems near the density driven Mott transition using the dynamical mean field theory.Comment: 4 pages, 2 embedded figure
    • …
    corecore