512 research outputs found

    Plasmas and Controlled Nuclear Fusion

    Get PDF
    Contains reports on three research projects.U. S. Atomic Energy Commission (Contract AT(30-1)-3980

    Graphene Oxidation: Thickness Dependent Etching and Strong Chemical Doping

    Full text link
    Patterned graphene shows substantial potential for applications in future molecular-scale integrated electronics. Environmental effects are a critical issue in a single layer material where every atom is on the surface. Especially intriguing is the variety of rich chemical interactions shown by molecular oxygen with aromatic molecules. We find that O2 etching kinetics vary strongly with the number of graphene layers in the sample. Three-layer-thick samples show etching similar to bulk natural graphite. Single-layer graphene reacts faster and shows random etch pits in contrast to natural graphite where nucleation occurs at point defects. In addition, basal plane oxygen species strongly hole dope graphene, with a Fermi level shift of ~0.5 eV. These oxygen species partially desorb in an Ar gas flow, or under irradiation by far UV light, and readsorb again in an O2 atmosphere at room temperature. This strongly doped graphene is very different than graphene oxide made by mineral acid attack.Comment: 15 pages, 5 figure

    Atmospheric Oxygen Binding and Hole Doping in Deformed Graphene on a SiO2 Substrate

    Full text link
    Using micro-Raman spectroscopy and scanning tunneling microscopy, we study the relationship between structural distortion and electrical hole doping of graphene on a silicon dioxide substrate. The observed upshift of the Raman G band represents charge doping and not compressive strain. Two independent factors control the doping: (1) the degree of graphene coupling to the substrate, and (2) exposure to oxygen and moisture. Thermal annealing induces a pronounced structural distortion due to close coupling to SiO2 and activates the ability of diatomic oxygen to accept charge from graphene. Gas flow experiments show that dry oxygen reversibly dopes graphene; doping becomes stronger and more irreversible in the presence of moisture and over long periods of time. We propose that oxygen molecular anions are stabilized by water solvation and electrostatic binding to the silicon dioxide surface.Comment: 17 pages, 5 figure

    Vibrational States of the Hydrogen Isotopes on Pd(111)

    Full text link
    The ground and excited vibrational states for the three hydrogen isotopes on the Pd(111) surface have been calculated. Notable features of these states are the high degree of anharmonicity, which is most prominently seen in the weak isotopic dependence of the parallel vibrational transition, and the narrow bandwidths of these states, which imply that atomic hydrogen is localized on a particular surface site on time scales of 100 picoseconds or more. Experiments to resolve ambiguities concerning the present system are suggested.Comment: Surface Science Letters, 302, L305 (1994

    Plasmas and Controlled Nuclear Fusion

    Get PDF
    Contains research objectives and reports on three research projects.National Science Foundation (Grant GK-1165

    Therapeutic androgen receptor ligands

    Get PDF
    In the past several years, the concept of tissue-selective nuclear receptor ligands has emerged. This concept has come to fruition with estrogens, with the successful marketing of drugs such as raloxifene. The discovery of raloxifene and other selective estrogen receptor modulators (SERMs) has raised the possibility of generating selective compounds for other pathways, including androgens (that is, selective androgen receptor modulators, or SARMs)
    • …
    corecore