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RESEARCH OBJECTIVES

The Active Plasma Systems group will continue to focus its attention on phenomena
in nonequilibrium plasmas. The theory of velocity-space-induced instabilities will con-
tinue to be refined, with more attention paid to geometries of finite, transverse, and
axial dimensions.

Experiments will continue to be centered around the beam-plasma discharge, and
will include studies of ion-cyclotron and lower-hybrid-resonance heating. The para-
metric behavior of the beam-plasma discharge will continue to be a principal focus of
interest.

1. Studies of the Beam-Plasma Discharge

During the past year, an electrostatic analyzer was developed for measuring the
axial energy of the ions escaping from the end of the discharge. "Parallel tempera-
tures" of 5-10 eV are observed, and since these measurements are made just beyond
the mirror peaks, one may assume at least an equal transverse temperature. With
this analyzer in place, it will now be possible to make direct and continuous measure-
ments of the escaping ion energy as a function of the system parameters: beam power,
magnetic field, pulsed gas transient, ion-cyclotron heating, and so forth.

L. D. Smullin

2. Plasma Heating Experiment

Our primary purpose in this experiment is to heat the ions of our beam-plasma dis-
charge and assess the effects of higher ion temperature on the character of the discharge.
The basic method of heating will involve coupling of RF energy to the ions; however, the
specifics are still uncertain. At present, it appears that the method of coupling will be
either to appropriately design a distributed coupling structure or modulate the electron
beam. The frequency will probably be in the neighborhood of the ion-cyclotron reso-
nance frequency, but we shall also investigate the possibility of using the lower hybrid
frequency, particularly with the beam-modulation method.

3. Studies of Ion Cyclotron Wave

In addition to the program that has as its main objective plasma heating, we plan to
continue studies of ion-cyclotron wave propagation. This work would continue the work

This work was supported by the National Science Foundation (Grant GK-1165).
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that we have discussed in previous Quarterly Progress Reports and would utilize the
techniques and methods already described. The specific problems that we would like
to explore are the following.

Electron Landau-damping of the ion-cyclotron wave. Our theoretical calculations
have shown that if the electrons do indeed interact with the wave to cause the observed
damping on a collisionless basis, then significant departures from exponential damping
should be observable.

The physical mechanisms responsible for the observed width of the ion resonance.
The experimentally obtained dispersion and resonance curves can be predicted from our
theoretical mode by inserting and adjusting a phenomenological damping term in the ion
dielectric tensor. We hope to separate the effects of ion-neutral and ion-ion collisions
and cyclotron damping by studying the behavior of the damping as a function of plasma
density and neutral pressure.

Propagation and/or resonance effects at the harmonics of w .. While observation of
ci

harmonic-resonance effects have been made, no detailed quantitative comparison with
theory exists. We hope that if harmonic-resonance effects are observed, they can be
quantitatively related to the ion temperature.

R. R. Parker

4. Nonadiabatic Trapping of an Ion Beam

An experimental investigation of the trapping of a spiralling ion beam by two-stream
instability effects is planned. The Lithium ion beam (energy ~100 volts) will be derived
from a commercially available solid ion emitter and injected with axial velocity opposite
to a tenuous hollow electron beam.

R. J. Briggs

5. Beam Plasma Interactions: Experiments and Theory

We shall continue experiments to explore the interactions of a plasma with a beam
that spirals across the magnetic field. Theoretical work has begun to describe the
modes of beams with drift motion both along and across the magnetic field.

Computer simulation of the nonlinear beam-plasma interaction has been completed.
We are continuing our computer studies of the plasma-vacuum boundary. The self-
consistent effects of plasma density gradients and thermal motion will be studied. We
are also investigating the effects of density gradients on the axial-propagation modes of
a magnetized column.

During the coming year, we plan to initiate a study of nonlinear mode-mode couplings
in plasmas and, in particular, bealn-plasma systems, and the stability analysis of finite
and inhomogeneous plasmas. We are now investigating various approaches to the prob-
lem of determining the effects of finite system length on the infinite-system stability
criteria.

A. Bers, R. J. Briggs
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1. BEAM-PLASMA DISCHARGE: SYSTEM D

Experiment

The axial extent of the discharge and the ratio of TII /T for the high-energy elec-

trons have been determined from the observed axial variation of the plasma diamagne-

tism during the beam-plasma discharge. Observations of low-frequency oscillations

stimulated by a low-voltage electron beam in the afterglow have been extended. 1

The diamagnetism of the plasma was observed with a 765-turn coil, 1/2 inch in

diameter and 1 inch long, which was movable axially at a radius of -3 1/2-4 inches. The

observed density variation as interpreted from the diamagnetism is shown in

Fig. XXIII-1 as a function of axial distance. The data have been corrected for the axial
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variation of the transverse energy and the variation of the outside boundary of the plasma.

The density profile has been compared with Post's description of the axial density vari-

ation in a magnetic mirror system.2 The axial variation is given by

It (1-4/R)1/2
n n (1-1/R)

where n is the midplane density, j is the ratio of the magnetic field at a point in the

system to its center line value, R is the mirror ratio, and t is TII/TI, with TII and

TL being the parallel and perpendicular temperatures for a Maxwellian description of

the plasma. The magnetic field profile and ne for t = 0.33, 0.5, and 1 are shown in
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Fig. XXIII-1. The ratio of parallel to longitudinal temperatures is observed to fall in the

range 0.33-0.5. The hot-electron temperature has been previously measured to be in the

range 10-14 keV. The plasma size is apparent from the profile shown in Fig. XXIII-1

where the end wall of the system is located at the peak of the magnetic mirror.

Low-frequency oscillations stimulated by a pulsed low-voltage beam in the afterglow

have been observed on beam current pickups in the beam collector. The pickups are

located at 90 ° to each other to determine the angular mode number of the oscillations.

The low-level beam pulsewidth (20 jLsec) necessary to avoid interaction with the self-

generated plasma requires the use of an oscilloscope to observe the oscillations. The

variation of the frequency of the oscillations with delay time in the afterglow is shown

in Fig. XXIII-2 where the frequency has been visually determined from photographs of
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Fig. XXIII-2. Fig. XXIII-3.

Oscillation frequency at times in the Amplitude of oscillations as a function
afterglow. of low-level beam voltage.

the oscillations. The variation of amplitude with beam voltage is shown in Fig. XXIII-3.

The oscillations as observed on the two probes are found to be in phase (m= 0).

Model for Low-Frequency Oscillations

The parameters of the beam and plasma in System D indicate that the beam and

plasma waves are in synchronism at a frequency just below the plasma frequency of

the cold electrons. Oscillations at the cold-electron plasma frequency (f 90 mc) have

been reported 3 and the interaction at synchronism explained for a plasma with both cold

and hot electrons. 4  The model proposed for the observed oscillations (f ~ 20-50 mc)

is that of the periodic field monotron discussed by Wesselberg.5 The periodic field

monotron consists of a resonant slow-wave structure and a zero space-charge beam.
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Integration of the force equations for the beam particles reveals that the beam particles

lose energy to the oscillation over certain ranges of the system parameters (transit

angle, etc.). This has previously been studied in several limiting cases. 6 ' 7 Numerical

integration of the force equations used by Jepson in the limiting case of wL/vbeam << 1
has yielded the results obtained by Wesselberg for the zero-space case (arbitrary wL/o).

An energy-loss contour for an electric field of the form

E = 0. cos kz 0 < z < Lz (2eL

is shown in Fig. XXIII-4. Other bands are indicated in the regions of frequency when the

bands cross k = nnr/L, n = 1,2, 3. The energy loss per beam particle is observed to

peak at k = nr/L.

The plasma cavity system has been studied to determine the existence of
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Fig. XXIII-4. Energy loss contours
wave field.

in standing-

low-frequency resonances. The lossless plasma waves in an infinitely long cylindrical

waveguide can be described by the following quasi-static dispersion relation in the

range of parameters

Wci << pi' << Wpe cold' Wpe hot << Wce'

by using the transport model for the hot electrons.
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A field of the form = sin kz Jo(pr) has been used. The k(w) for a typical plasma

parameters diagram is given in Fig. XXIII-5. The beam waves are indicated for kb
w/v . If the system is assumed to be L long and we require Er = 0 at the end walls,
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Fig. XXIII-5. Lossles k(w).

we find that the plasma cavity system has resonances at kn = nr/L and

22 22
pi nwpe cold

n= 2 2 + 2 V 2

n pe hot T

Analysis of the possible loss mechanisms indicates that for the range of parameters of

the System D afterglow, Landau damping is the most significant loss mechanism for

the infinitely long, uniformly filled cylindrical plasma waveguide. k(Wreal) and u(kreal)

are given in Fig. XXIII-6 for a typical set of plasma parameters. The dispersion rela-

tion8 is given below

2 2
W 2 pe cold

k - +
W2 2

w L

2

pe hot
k 2 kV

k2V T kV

where it has been assumed that pVT/wec < 1.

The effects of a nonfilled cavity, both radially and axially, and the effects of finite
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system length on the Landau-damping model are now being investigated to determine

whether the beam energy loss to the oscillations is sufficient to overcome the plasma

losses.

The author wishes to acknowledge the use of the facilities of the Francis Bitter

National Magnet Laboratory for the experiments reported here, and the use of the

facilities of Project MAC for the computations.

R. R. Bartsch
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2. SPIRALING BEAM-PLASMA INTERACTIONS

Experimental Observations

Oscillations near the electron cyclotron frequency Wce and its harmonics, observed

in the spiraling beam-plasma experiment, have been discussed in a previous report. 1

Oscillations have been observed above wce' ZWce and 3 wce which scaled with the mag-

netic field. Recently, azimuthal wavelength measurements of these signals have been

made, and they will be discussed in this report. In all of the following observations a

continuously flowing, spiraling electron beam was used.

Three radial electric monopoles were placed 90 apart, azimuthally around the

stainless-steel screen that surrounds the discharge region (see Fig. XXIII-7). They

Fig. XXIII-7. Azimuthal probes.

were located 4 inches from the gun and 2 inches from the collector, and were approxi-
mately 0. 75 inch long. Shielded cables carried the signals from these probes to a dual-
beam oscilloscope. One signal was used to trigger both beams and was displayed on the
upper trace. A second signal was displayed on the lower beam and the relative phase
between the two signals was observed.

Figure XXIII-8 shows the results when a 62.5-mHz signal that was between wce and
2wce was observed. The two traces shown in Fig. XXIII-8a were from signals on probes
90* apart. The traces in Fig. XXIII-8b were from signals on probes 180* apart.
Under the assumption of an ejme dependence, these results indicate an m = 1 mode.
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Similar observations were made on

indicated that this was an m = 2 mode.

an oscillation above 2wce and below 3 ce. They

Reversing the direction of the magnetic field

PROBES
~900

(a)

PROBES

,1800

Fig. XXIII-8.

Azimuthal phase variation of m = 0 mode.
(a) Probes, 90*. (b) Probes, 180*.

(b)

resulted in a change in the sign of m.

Measurements have also been made of the frequency dependence on beam density.

The beam current and beam voltage can be controlled independently. The following

observations were made at a constant beam voltage and constant magnetic field. The

beam current was varied continuously from 0 to 10 mA, and the signal on one of the

BEAM PERVEANCE
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13.8 /. PERV
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tI
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Fig. XXIII-9. Dependence of mode number m on beam density.
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radial field probes was observed on an oscilloscope. Three characteristic waveforms

and their corresponding beam currents are shown in Fig. XXIII-9. It can be seen that

a 1-mA beam resulted in oscillations at the m = 1 mode only. The waveform was essen-

tially a pure sinusoid. As the beam current was increased to 5 mA the m = 1 and m = 2

modes were observed. At 6 mA the m = 1 mode could no longer be seen. The signal

was no longer a sinusoid, but appeared to be composed of m = 2 and higher modes.

These results indicate that the higher m-modes are present with higher beam den-

sities. Since the plasma is created by the beam, changing the beam density also affects

the plasma density. Therefore the above-mentioned measurement was not the result of

a simple parameter change. Further investigations are necessary to discover the true

density-frequency dependence.

Theoretical Model of the Beam

The beam used in

(see Fig. XXIII-10).

zero-order motion is

our experiment is a cylindrical shell of thickness T and radius r

It has zero-order azimuthal and axial velocity components. This

established by the magnetic field so that the azimuthal velocity is

v± = rce.

The beam is assumed

are ignored.

to be neutralized by infinitely massive ions. The effects of slip

Vz

Tr

Fig. XXIII-11.

Fig. XXIII-10. Cylindrical beam.

X

Z/z
ZAy

Sheet beam.
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To model this beam we have unwrapped it to form a sheet beam as shown in

Fig. XXIII-11. We require that the wavelength in the y direction fit around the circum-

ference of the cylindrical beam an integral number of times. The first-order variations

on this sheet beam then go as

e my -z)
m = 0, 1, 2....

We assume a first-order perturbation of the beam particles given by

6 = ix (y, z, t) + i 6 (yz, t) + iz(y, z, t),

and that the beam density varies as a Gaussian function of x. Performing a rigid beam

analysis2 gives a set of homogeneous equations for the components of 6

x = x ce y

0 25 = W2 6 + W3z + jce (1)y 2 y 3 z ce x

2 2 25+ 25
z W46 y 5z

2
where 02 = - mwce - kvce and the w are reduced beam-plasma frequencies.

ce ce k

2 2
w = wpbR i

(f = 1,2, 3,4, 5),

Here, pb is the beam-plasma frequency at the center of the beam, and

2 2
2 +k T 2 +k T

\T2 I Z"i- - i( _

2R = m T
R2  k2

2 N- r I 2- + k
r

R kr
3 m 2

R 4 = R 3

22

5 2- Rm

zi.
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with Z i the imaginary part of the plasma dispersion function.

The dispersion relation follows directly from Eqs. 1 and can be placed in the form

0=4 2 2 2 2 ) W 2 2 22 2+ 2 4 (2)
0 = - 1+2+w5+ + w1 5 2 + 05 2 3. (2)

This dispersion relation was investigated for three values of m; 0, 1, and 2. Real

values were chosen for k and the four values of w were obtained. The results are

shown in Figs. XXIII- 12 through XXIII- 15.
2 2 2

The dispersion relation for m = 0 is degenerate because wZ = 3 = 4 = 0, and the

relation becomes

22 2\(22 = 0. (3)
S-ceo 1  \-o 5 = 0. (3)

The equations for the components of 6 also uncouple.

S25 = W2 6 - j o 6

2 6 = jow ce6 (4)

026 = j2 6

2 2
It can be seen that the waves 0 - 5 = 0 are made up of particle motion only in the z-

direction, with the particles oscillating at a reduced plasma frequency w5 . There is

no dependence on the magnetic field. The particle motion is characteristics of a lon-
2 2 2

gitudinal wave. The second set of waves, O - ce - = 0, is made up of particle

motion across the magnetic field. The polarization of this motion is circular for small

wavelength, becoming elliptical for longer wavelengths. One of these waves has a phase

velocity less ,than the beam velocity and is right polarized. The other wave has a

plasma velocity greater than the beam velocity and is left polarized. These are there-

fore very similar to cyclotron waves.

These m = 0 beam waves are shown in Fig. XXIII-12 for the condition Wace > Wpb.

The positive and negative energy waves are labeled (+) and (-), respectively. Fig-

ure XXIII-13 shows the m = 0 waves for the condition w5 > Wce. Although the cyclotron

and longitudinal waves intersect, they do not couple.

The beam waves for m = 1, and with wce > Opb are shown in Fig. XXIII-14. For

these waves, the x, y, and z particle motions all couple; however, the waves still have

properties similar to the m = 0 waves previously described. The waves labeled A and

B are essentially cyclotron waves. For small wavelengths their transverse motion is

circularly polarized with negligible z-displacement. As the wavelength increases the

transverse motion becomes slightly elliptical and the z component increases. The
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Fig. XXIII-12. Beam waves; m = O, wce > Opb.
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Fig. XXIII-13. Beam waves; m = 0, w5 > Wce
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waves labeled C and D are similar to longitudinal waves. Particle motion for small

wavelength is z-directed, for the most part, with negligible transverse components. As

the wavelength increases the transverse motion increases.

The dispersion for m = 1, 5 > ce is shown in Fig. XXIII-15. Here the roots couple.

The solutions E and F, for short wavelength, behave like longitudinal waves. As the

wavelength increases above the beam thickness these solutions become similar to waves

A and B of Fig. XXIII-14. The solutions G and H are similar to cyclotron waves for

short wavelength. For long wavelengths these solutions have the characteristics of

waves C and D of Fig. XXIII-14.

The waves for m = 2 and higher modes are similar to the m = 1 waves, except that

the Doppler shift is mwe.

We are now in the process of investigating the coupling of these beam waves with

waves of a plasma background.

B. R. Kusse, A. Bers
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3. BEAM SPACE-CHARGE-WAVE INTERACTION WITH THE BACKWARD

WAVE IN A COLD-PLASMA WAVEGUIDE

We have begun a systematic investigation of high-frequency beam-plasma interactions

in a plasma-filled waveguide. One interaction that has not been studied in detail in the

past is the beam space-charge-wave interaction with the backward plasma wave near

Wpe' for the case ope > 'ce. We present here some results of a recent study of this

interaction, in which collisional effects were included.

The model considered is that of an electron beam traveling with velocity vo through

a cold electron plasma uniformly filling a circular waveguide, with a uniform axial mag-

netostatic field B imposed on the system. Neglecting ion motion and assuming quasi-

static waves of the form exp(jwt-jkzz), where kz is the wave number along the axis of

the waveguide, we find that the dispersion equation for the space-charge-wave (or m = 0)

interaction is

(r-kzVo2 [k2zKI (w)+p2K (w) k2 2
L= kz;%' (1)

where

p = transverse wave number in the waveguide

S= Ileffective" beam-plasma frequency, which depends on the beam density

profile

2
pe

K() = 1-2 (2)
W (1-jv c/W)

SOpe (1- jv c/o )

Kl(o) = 1- 2 2 2 (3)
o (1-jv /Wc) - Wcc ce

v = collision frequency for plasma electrons.

By analogy with the backward-wave oscillator, it has been argued 2 that an absolute

instability should arise when the slow beam space-charge-wave interacts with the

backward-propagating plasma wave just above Ope ( pe> ce). By applying the Bers-

Briggs instability criteria to the dispersion equation (1), we found that this absolute

instability did exist in the limit of zero collision frequency and a very weak beam. We

also found, however, the following facts regarding this "backward-wave" interaction:

(i) As the effective beam-plasma frequency cb is increased from zero, in the

absence of collisions, there is a transition (at some critical Ob) from an absolute
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instability near ope to "infinite spatial amplification" at wpe. As cb is further increased
the absolute instability is eliminated. This critical value of b (for vc = 0) is a function of
the plasma parameters. When (pv) <wpe ce2 this critical value of cb at the transition
is given by

(~v ce

ob \pe pe /
(4)

pe c -e 2

\pej

This expression vanishes as p - 0, thereby showing that there is no region of absolute

instability for the one-dimensional case, as is well known.

Im x-]  X 104x 0-c -0- 3Wpe

6

5 /

= 5x '- 4  Fig. XXIII-16.4 pe

3 Imaginary part of branch pole frequency ws as a

2r function of ,b' with collision frequency v c as
wpe parameter. (Note: Re (w /w ) 1). Plasma

/00 S: / .s pe

0 w parameters: Pvo/pe = 0. 054; ce/wpe = 0. 5.
01 ~~2 &04 wpe

-2 1

2

-3

-4 -

(ii) As the collision frequency v c is increased from zero with .b fixed, the absolute

instability (if it originally existed) becomes weaker and is ultimately replaced by a con-

vective instability with a finite spatial growth rate. In case an infinite amplification is

observed in the absence of collisions, a finite spatial amplification is obtained when col-

lisions are included.

These statements may be clarified by the accompanying diagrams. Figure XXIII-16

shows the imaginary part of the branch pole frequency ws as a function of wb, with col-

lision frequency vc as a parameter. (Corresponding to the branch pole ws, there is a

saddle point kz(ws) in the complex k z-plane, formed by the merger of two roots coming

from opposite halves of the kz-plane as Im (w) is increased from -oo.) An absolute insta-

bility is indicated when Im (ws) <0. It is seen that increasing qb or vc, or both, will

bring the branch pole into the upper-half w-plane, with the result that there is a
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transition from absolute to convective instability.

In the region of convective instability, the solid curves in Fig. XXIII-17 give the max-

imum spatial amplification rate (near w = w pe) as a function of collision frequency vc, with

wb as parameter. For comparison, the broken curves in Fig. XXIII-17 give the

- p
v  

0.054 = 0.5
pe/ pe

__ ( PV. 0

2 pe

2-002

J .
01I

0 2 3 4 5

X C 3c X 10
L-pe

Fig. XXIII-17.

Maximum spatial amplification rate (at o = pe ) as a

function of collision frequency v c with b as param-

eter. Solid curves are for a waveguide of finite radius
(p0O); broken curves are for a waveguide of infinite
radius and wave propagation along the magnetostatic
field (p= 0). Small circles terminate the solid curves
at points of transition from convective to absolute
instability.

maximum amplification rate (again near pe) for the one-dimensional case (p= 0). It

was found that in the presence of collisions the one-dimensional model gave fairly good
pv /' \ 2

values for the maximum amplification rate when 1, 0- e 1, and b was
pe \pe

properly adjusted to account for the finite size of the beam.

S-L. Chou, A. Bers

References

1. S. Chou and A. Bers, "Thin Electron-Beam Interactions with Ions in a Plasma-filled
Waveguide," Quarterly Progress Report No. 87, Research Laboratory of Electronics,
M.I.T., October 15, 1967, pp. 89-99.

2. R. J. Briggs, Electron-Stream Interaction with Plasmas (The M.I.T. Press,
Cambridge, Mass., 1964).

QPR No. 88 185



(XXIII. PLASMAS AND CONTROLLED NUCLEAR FUSION)

4. CRITICAL LENGTHS FOR ABSOLUTE INSTABILITIES

The classification of unstable modes in infinite uniform systems as either absolute

or convective can be of considerable intuitive benefit when reasoning about the stability

of an actual finite and inhomogeneous system. For a convective instability, the ampli-

fication rate (Im k for real w) provides a measure of the system lengths for which the

unstable mode is important. (Precise statements require a careful consideration of

wave reflection at the ends; the important point to be stressed here is that at least the

general order of magnitude of the critical system lengths can be inferred from the uni-

form system theory.) A uniform system that supports an absolute instability, on the

other hand, has a "built-in" feedback mechanism. It is well-known that there are usu-

ally minimum system lengths for absolute instabilities to occur, these critical lengths

relating essentially to the strength of the internal feedback mechanisms. The purpose

of this report is to indicate a possible method for identifying the critical lengths asso-

ciated with absolute instabilities.1

Construction of Eigenmodes in the WKB Approximation

We consider a slowly varying medium with parameters such that the local
L L

dispersion relation predicts absolute instability over the region - 2 < z < - (see

n(z) Fig. XXIII-18. Inhomogeneous medium in which a
parameter (for example, the plasma
density n < z) varies smoothly. The

S - local dispersion relation predicts
absolute instability over the region

L -- L where n > n 1.

Fig. XXIII-18). For a slowly varying medium, one is led to consider solutions

for the physical variable q of the WKB form:

q(z, w) ~ exp j kn(w, z) d) , (1)

where kn(w, z) is one of the solutions to the local dispersion equation, and W is the usual

Laplace transform variable. If one imagines a localized source situated in the central

region (for example, 6(z) 6(t)), then it might appear at first sight that the solutions on

either side of the source would contain a sum of terms of the form of Eq. 1, where the

kn (, z) appropriate to either side are selected by the same "rules of causality" as in

the infinite uniform system. The WKB solution is valid, however, only in regions where

dk
dz < 1. (2)
k
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In a system that exhibits absolute instability, there is a "degeneracy" (k 1 = k 2 ) of posi-

tive (kl)-going and negative (k 2 )-going waves at a critical (saddle-point) frequency ws .

In a nonuniform system, this saddle-point frequency is a function of position, and near

Os(z), therefore,

kl, = k + a (z) - , (3)

dk
and d- oo at any position zowhere ws(zo) = w. This means, as we shall describe in

more detail, that in the case of a nonuniform system the presence of a "pinch" like that

associated with an absolute instability leads to a "reflection" of the wave in the vicinity

of the (possibly complex) position zo . Since there would be a complementary reflection

point at -z o in a symmetrical system, we are led to the tentative conclusion that there

is a close connection between the existence of "confined" unstable eigenmode solutions

to the inhomogeneous media problem, on the one hand, and the prediction of absolute

instability from the local dispersion relation. Furthermore, the eigenfrequencies asso-

ciated with such a finite-system eigenmode approach the uniform-system saddle points

as L - oo.

We now wish to demonstrate the correctness of these assertions. We shall assume

that the response can be developed, using only the two wave numbers that are involved

in the absolute instability pinch. (This assumption should be valid at least in the limit

of very large L; we cannot offer any concrete conditions for its validity otherwise,

except to note that if another root (k 3 say) undergoes a "metamorphosis" with k I or k2
in the region of interest, it should also be included in the expression for i(o, z).) With

this assumption, we write

(z,) = Agl(z) exp - j kl(wo, z) dz

+ Bg 2 (z) exp - j k 2 (w, z) dz, (4)

where gl and g 2 are slowly varying relative to the exponentials when the WKB solutions

are valid. Let

1
q(w, z) = 1 (kl(c, z) - k 2 (w, z)) (5)

and za(w), Zb(w) be the positions where k1 = k 2 (q= 0). For a general N-wave system, one

can show from the coupled first-order equations that for the WKB solutions in Eq. 4

gl(z) ~ g2(z) ~ 1/4-q (6)

in the vicinity of the points where q = 0. 3 (One can also readily demonstrate Eq. 6 for
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electrostatic plasma waves, since in that case g = -1/k , where E(, k, z) is the

dielectric constant, and E = 0 is the local dispersion relation. Near a double root of

the dispersion relation at ks, therefore ( k kl - ks ~ q, etc.)

This result suggests that we write Eq. 4 in the form

q(z,o) = Agl(z) exp -j q(w, z)dz +Bgz(z) ex p +j q(o, z) dz

exp [j k k2 dz]. (7)

1
The fact that the exponential factor 2 (kl+k2) is well-behaved at z and z and also

that gl and g 2 behave as in Eq. 6 near q= 0, means that our problem is essentially iden-

tical in form to the classical WKB solution of the second-order inhomogeneous wave

equation. (See, for example, Heading. 4 ) In Fig. XXIII-19a, we have sketched the gen-

eral form that the Stokes and anti-Stokes lines emanating from the critical point za must

have for an eigenmode to be constructed. In the section bounded by A 1 and A 2 , which

includes the positive real z axis by assumption, the solution must involve only outgoing

waves, (the term with kl(w, z)) so B = 0 in this domain. Furthermore, since by assump-

tion the plasma becomes stable for z - +oo, the locus of the roots of k(w, z) as z - 0o must

be as shown in Fig. XXIII-19b for any w in the lower half-plane. Therefore, the solu-

tion for z - oo contains only the subdominant term in the general WKB solution (Eq. 7),

and by the general rules for tracing the asymptotic solutions round the critical points,

we find that B = jA in the domain bounded by S2 and S3 . We can apply dual arguments

to the metamorphosis of the solution around the other turning point (zb), which must

involve only the outgoing wave (k ) for z - -oo. The consistency of these solutions

imposes the usual quantization condition

q(w, z) dz = (n+ . (8)

z b(w)

We stress again that the formulation of this determinantal equation for the eigenfre-

quencies is based on the assumption that the Stokes and anti-Stokes lines of q(w, z) are as

shown in Fig. XXIII-19, and also on the assumption that the medium is stable for z - ±oo

so that the appropriate solutions in these regions, as dictated by causality, are also the

subdominant terms in Eq. 7.

We shall use Eq. 8 below to examine a simple case of absolute instability that

has aplication to the microwave tube field. In order to illustrate the qualitative

features of the eigenfrequencies predicted by Eq. 8, we shall now consider a

case in which the system parameters are roughly constant over some region L,
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Fig. XXIII-19. (a)
(b)

Stokes and anti-Stokes lines in the complex z-plane.
Motion of wave numbers away from pinch as z varies.

za(w) and zb(w) are the points where q(w, z) = 0.

Al, A 2 , A 3 are the anti-Stokes lines.

S1, 2,' S3 are the Stokes lines.
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so that we can approximate Eq. 8 by

qL = (k,()-k2(w)) L - (n+ ) (9)

where k 1 and k 2 are now considered independent of z. This approximation should be

valid at least in the limit of large L, where the eigenfrequencies approach the infinite-

system frequency (ws) as L - oo. For L < oo, Eq. 9 suggests that we obtain the finite-

system eigenfrequencies by solving for the w values that satisfy

Im (k 1 (w)-k 2 (w)) = 0

Re (k 1 (w)-k 2 (w)) = w/L. (10)

A schematic illustration of the solution of Eq. 10 is shown in Fig. XXIII-20,

and shows how the frequencies depart from the infinite system values as L is

decreased. If the absolute instability is weak enough so that the departure of

k1 and k 2 from ks is not too great, this procedure can in some cases give us

the actual critical length where Im (w) passes through zero.

ki L "

L2 
L

---------- L2 L 2 < L I

r L l rI I r
I L 2 L --- o

Fig. XXIII-20. Solution for the eigenfrequencies as a function of L,
with Eq. 10 used.

Also note that the departure of w from os in the limit of large L can be expli-

citly derived from the expansion

- 1 8s s3 (k-ks 2

1 ((a 21
\k1 5

0)~ol F\2(1
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Example of Coupled Modes

The weak coupling of two propagating modes, when one wave is a negative energy

mode and the other is a backward wave, is a classic example of an absolute

_vb (POSITIVE ENERGY/ NWAVE)

.V (NEGATIVE ENERGY
WAVE )

2K(z)

Fig. XXIII-21. Local dispersion of the coupled-mode example in the (o-K)-plane.

-L/2

K (z)

Fig. XXIII-22. Form of coupling con-
stant as a function of z.

L/2

instability (see Fig. XXIII-21). If we model the finite system as a gradually varying
L L

spatial coupling constant K(z) that goes to zero outside the region < z <-2
(Fig. XXIII-22), then the local dispersion relation becomes

(i- +. = K2 (z), (12)

where k = k - k and o = - . For this case,

q(, z) -- 2~ (kl-k2)

2 + K(z) (13)
v 

S
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with 1/v s  - (1/va+ 1/b). As an example, consider the parabolic form

K2(z) = - (14)

An elementary calculation from Eq. 8 gives the eigenfrequencies

r,2 2K
0 o 2

2 - (zn+l) L Ko, (15)
v

s

and the critical length

2
Lcrit = (16)

o

In terms of the average coupling constant, <K > =T Ko, the critical length is

T 1

crit 2 <K>' (7)

Equation 17 is a general result, as can be seen from Eq. 13, since W = 0 at the onset

of the finite-system instability.

This critical length is in precise agreement with the boundary-value solution of the

uniform-coupling problem,5 except for the fact that the coupling constant is averaged in

the WKB case. The important general lesson to be learned from this example is the

fact that the system length for instability is related to the "beat wavelength" (~(kl-k 2)-l),

and not to the total wavelength (-~r/ko). In physical applications of the present example,
these two wavelengths can differ by orders of magnitude.

R. J. Briggs
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B. Applied Plasma Physics Related to Controlled Nuclear Fusion
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D. G. Colombant M. Hudis C. E. Wagner

G. R. Odette

RESEARCH OBJECTIVES

1. Radiation Damage Studies

Radiation damage by 14. 2-MeV D-T fusion neutrons will be an important considera-
tion for any controlled fusion reactor. We have built and operated a sensitive internal-
friction spectrometer to measure damage caused by small doses of 14. 2-MeV neutrons
and have developed a theoretical model to allow us to estimate the extent of 14. 2-MeV
neutron damage by extrapolation from lower energy radiation data (fission spectra, for
example). These extrapolation techniques will be tested by applying them to compari-
son of samples irradiated in the M. I. T. reactor and in the Department of Nuclear Engi-
neering's Cockcraft-Walton neutron generator.

G. R. Odette

2. Experimental Instability and Diffusion Studies

The long "quiescent" plasma column developed here by J. C. Woo is being used by
several investigators. "On-line" correlation techniques have been developed to inves-
tigate the spectrum of oscillations that are present in the column and, in particular, we
have identified and are studying several species of drift wave. We hope to pin down the
drift-wave driving terms and to measure saturated wave amplitudes to test certain pre-
dictions of nonlinear plasma kinetic theory. We are also investigating the average par-
ticle lifetime in the plasma for a wide variety of conditions and have just begun an
experiment aimed at the direct measurement of local values of the diffusion current.

D. H. Ross, M. Hudis, R. A. Blanken,

L. M. Lidsky, N. L. Oleson

3. Intense Neutron Sources

Preliminary calculations indicate that it may be possible to build a 14-MeV neutron

source with 1015 n/cm 2 sec intensity at the target position by using the Mach cone of a
freely expanding jet as a windowless gas target. A detailed investigation of such neu-
tron sources has been started, with the primary objective of solving the hydrodynamic
equations for duct flow with intense heating. This will be followed by an analysis of the
system to find the optimal pressure ratios, expansion factors, diffusor design,
and so forth.

D. G. Colombant, L. M. Lidsky

*This work was supported by the National Science Foundation (Grant GK-1165).
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4. Confinement of Hot-Electron Plasmas

We have generated beam-plasma discharge plasmas in mirror, cusp, and stuffed-
cusp magnetic fields and are engaged in measurements of their similarities and differ-
ences. The mirror-contained plasma is distinguished from the cusp-contained plasma,
'for example, by a much higher temperature for the energetic group (35 keV versus
~10 keV) and a higher level of density fluctuation. We plan to identify the types of insta-
bilities which are present in these several systems, giving special attention to distin-
guishing the instabilities driven by the high- and low-energy electron groups.

C. E. Wagner, L. M. Lidsky

5. Particle Motion in Large-Amplitude Waves

We are attempting to calculate the time evolution of the distribution function for a
single nonlinear wave. We hope that the solution of this problem can then be applied to
strong narrow-band turbulence. In this regime, particle trapping, or strong reflections
from potential maxima, is an important feature of the motion. This feature is not
included in present weak-turbulence theory.

T. S. Brown, T. H. Dupree

6. Computer Experiments on Turbulent Plasma

A computer program has been written to compute the particle distribution function
for a given arbitrary spectral density pf the electric field. The influence of the spec-
trum on particle motion can be studied in detail and compared with various theories. The
distribution function and the electric field are not required to satisfy Maxwell's equation.
Dropping this "self-consistency" constraint leads to a much more accurate computer
simulation of the Vlasov equation, and also gives the experimeter complete freedom to
specify the spectrum.

R. W. Flynn, T. H. Dupree

7. Nonlinear Wave-Particle Interaction in a Turbulent Plasma

As a result of wave-particle interactions, particle trajectories deviate from the
unperturbed orbits used in standard perturbation theory. This gives higher order sec-
ular terms when solving the Vlasov-Maxwell equations. A new perturbation theory is
being studied in which a statistical set of perturbed orbits is used, so that it leads prin-
cipally to a broadening of wave-particle resonances.

Wave-particle interactions in the presence of a static magnetic field are being
investigated by using this method. The results will be used to assess the importance of
nonlinear effects on growth rates and diffusion coefficients for some major types of
instabilities.

C. T. Dum, T. H. Dupree

1. PARTICLE FLUX MEASUREMENTS IN A HOLLOW-CATHODE ARC

Recent alkali-plasma experiments have shown that low frequency oscillations either

arel intimately connected with enhanced plasma diffusion or they are not. 2 Chu, Handel

and Politzer show that local values of the diffusion coefficients inferred from values of

(An . A agree with global estimates of total plasma loss rates. In their experiments

the density and potential fluctuations were caused by collisional drift waves. In a very
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similar measurement performed by F. Chen, it has been that the fluctuations in

density and potential were almost exactly in quadrature, and that the particle losses

could not be attributed to drift-wave driven processes. We plan to measure the enhanced

particle flux directly, and thus to shed light on the mechanisms of instability-driven

diffusion.

The net radial flux in the plasma column is approximately 40 db below the random

(Nv/4) current and, we guess, -20 db below low-frequency random fluctuations in the cur-

rent for the most quiescent possible state of the plasma. 3 To assess the feasibility of

dredging this signal from the noise, we have been measuring the axial and azimuthal

drift currents, which are ~20 db greater than the radial currents of interest. Experi-

ence has shown that gains in excess of 20 db in S/N ratios are possible with synchronous

detection techniques.

These preliminary measurements pointed up an unsuspected feature of the plasma

column - it is very highly anisotropic. Figure XXIII-23 shows probe curves measured

with a one-sided flat Langmuir probe. If these curves are interpreted by simple probe

theory, Fig. XXIII-23a indicates an electron temperature of 3. 3 eV and total ion density

6 x 1012 cm 3 ; Fig. XXIII-23b, made with the probe facing in the direction of azimuthal

E/B rotation, indicates an electron temperature of 4. 2 eV and azimuthal velocity of

105 cm/sec. The asymmetry is apparent also in autocorrelation traces of potential

fluctuations. Figure XXIII-24 shows autocorrelation of the signals obtained for two dif-

ferent probe directions.

The ease with which azimuthal fluxes are measured augurs well for the attempt to

measure radial flux; we shall construct a two-sided rotating probe for these measure-

ments. For rotational frequency w, the diffusion flux will constitute a current modula-

tion at frequency w/2.

M. Hudis, L. M. Lidsky
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2. A POSSIBLE VERY INTENSE PULSED CONTINUUM X-RAY SOURCE

As part of our general study of inte.nse particle and radiation sources, we have com-

pleted a brief feasibility study of a continuum x-ray source. The particular source

discussed in this report produces copious radiation in the 25-250 keV energy range in a
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pulse of ~5-C sec width, but these parameters are subject to considerable variation.

Intense x-ray bursts of this sort are typical of those that might be produced,

for example, in pulsed controlled fusion reactors.

Relativistic electrons in magnetic fields radiate energy at the cyclotron frequency

and its harmonics. The resulting spectrum is nearly flat out to a critical frequency,

Sc, and then falls off very rapidly. The critical frequency is given 1 by

c = 
3 y2 ( (1)

where y = (1-v/c2)- 1 /2, and p is the radius of curvature of the electron orbit in the

magnetic field. For a characteristic photon energy, E = h c , the requisite electronc c
energy is related to the magnetic field, B, by

mE2 o c
Y 3B (2)

For E = 100 keV, and B = 25 W/m 2 , we find that the electron energy is in

the neighborhood of 2 GeV and the Larmor radius = 23 cm. The "betatron radia-

tion" is intense for such highly relativistic electrons, and the standard acceler-

ator formulas yield E/k = 2.5 X 10- 6 sec. Since 2 GeV electron energies are

certainly technologically feasible (the Stanford Mk III linac produces 1-GeV elec-

trons, while SLAC yields >20. 0 GeV) and 250, 000-kG fields are, in principle,

attainable, even in large volume on a pulsed basis, we proceed to a more care-

ful calculation.

Consider an electron injected at t = 0 into a uniform constant magnetic field.

Schwinger gives, for the total radiated power,

2 e2 3s E2 4 (3)
(t) = 2 - o R e 

(3)

and, for the spectral distribution,

33/2 e2E2 4 w , (4)

P(wt) = e K5/3 () d1, (4)

3 E 3 c moV (rE

where ¢wc - o m ), o = R-' R = (qB , and it has been assumed that

E >> mc2 and w > c/R. Equation 3 may be solved to yield the history of particle energy,

and Eq. 4 can be simplified to give the set

QPR No. 88 199



(XXIII. PLASMAS AND CONTROLLED NUCLEAR FUSION)

2 2 ce /eB 2  -1 Eo_0E (t) = m coth t + coth (a)
mc me

P(Wt) e Kg5/3(T) dn. (5b)
P(w ,t) - c /wOc

No tabulations of the integral in Eq. 5b were known to us, so it was solved numerically
in normalized units (see Fig. XXIII-25) and for the special case of 2-GeV electrons in

a 250-kG field (see Fig. XXIII-26). The peak of the radiated spectrum moves down in

energy as the electron cools and, as is seen in Fig. XXIII-27, by 10 jsec the radiation

is all at energies of less than 25 keV. The total radiated energy per electron follows

from Fig. XXIII-28. For the parameters under discussion here, the electrons have

radiated 1. 4 GeV in 5. 0 isec.

There is no single parameter that is useful for describing source intensity because

the radiated spectrum changes with time and with angle measured from the plane of

rotation. The total energy/pulse radiated in the 25-250 keV region of the photon spec-

trum during the first 5 psec is probably as good a measure as any for evaluating the

utility of the source for possible experiments. If the injection pulse is supplied by an

electron linac, then the pulse current will be limited by "beam breakup instabilities."

The limiting current2 is given by I = K(av/az)/LT, where K is an empirical constant

depending on the accelerator structure, 8v/8z is the average energy gradient, L is the

accelerator length, and T is the pulse duration. 2 For the Stanford Mk III and for SLAC,

K = 2 x 104 mA for energies measured in MeV and 7 measured in microseconds. For

an accelerator, 200 meters long, based on the Mk III design, it should be possible to

inject approximately ~1013 electron/pulse. This corresponds to 1. 5 x 103 J/pulse in

the soft x-ray continuum.

K. Chen, L. M. Lidsky
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C. Active Plasma Effects in Solids
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RESEARCH OBJECTIVES

We intend to study the collective (plasma-type) effects of free carriers in a solid,
with particular emphasis on the exploration of unstable modes of oscillation and wave
propagation. Our research activity in this area has been evolving during the past three
years. Experimental studies have been focused on the microwave emission from n-type
InSb bars at 77*K and 4*K with applied electric and magnetic fields. Theoretical studies
have been concerned with instabilities of drifted helicons and drifted electron-phonon
interactions in a magnetic field. During the coming year we plan the following studies.

1. Microwave Emission from n-Type Indium Antimonide

Indium Antimonide emits microwave noise when it is subjected simultaneously to
DC electric and magnetic fields. The cause of the instability that gives rise to this
emission is not fully understood. Experiments made at temperatures ranging from
1. 2OK to 77K are now under way, the purpose of which is to determine the frequency
and temperature characteristics of the emission as a function of sample size, carrier
concentration, and surface quality of the sample.

2. Effect of Contacs on Microwave Emission from InSb

Although the onset of emission is found to be insensitive to surface conditions and
contacting procedures, the magnitude of the emission changes when the electric field
is reversed. To find out whether the emission comes from the bulk of the material or
the contacts, attempts are now being made to observe the microwave emission from
ring-shaped samples that have no contacts. The required electric field is induced by
a low-frequency time-variant magnetic field that threads the ring.

3. Acoustic Wave Amplification by Electrons Drifting in a Magnetic Field

Our theoretical studies have indicated the possibility of linking the observed
microwave emission from InSb with acoustic wave generation by the drifting elec-
trons. We plan to put acoustic transducers onto the surface of the InSb bar to see
if we can detect directly the generation of acoustic energy at the onset of micro-
wave emission.

*This work was supported principally by the National Science Foundation (Grant
GK-1165).
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4. Light Scattering from Unstable Waves

Incoherent scattering of electromagnetic waves from plasma oscillations provides
a means of establishing the dispersion characteristics and oscillation amplitudes of the
waves in question. A high-power, Q-switched CO 2 laser has been constructed for use

as the primary source for the scattering experiments. Work is in progress to scatter
from unstable waves generated in Indium Antimonide subjected to DC electric and mag-
netic fields.

5. Helicon Waves in the Presence of Electron Drift

A helicon wave excited in a plasma can become potentially unstable when the elec-
trons are made to drift through the application of a sufficiently strong DC electric field.
Feasibility studies to verify this mode of oscillation experimentally are under way.

A. Bers, G. Bekefi

1. MICROWAVE INSTABILITIES IN A SEMICONDUCTOR SUBJECTED

TO DC ELECTRIC AND MAGNETIC FIELDS

We are continuing investigation of the emission of microwave radiation from n-type

InSb when a sample is subjected simultaneously to parallel DC magnetic and electric

fields. 1

We have planned to study the emission spectra from 500 MHz up to -10 GHz. This

large frequency range requires the use of a broadband sample holder which has been

designed, constructed, and tested. It consists of a center conductor mounted coaxially

within an outer conductor. The center conductor is supported by means of a short sec-

tion of low-loss, dielectric material. The InSb sample is mounted at the end of the

coaxial holder in a manner similar to that illustrated in a previous report.2 The return

for the DC current pulse is through the double stub tuner. In all of the measurements

reported here this broadband holder was used.

Upon investigating the output emission for a sample 1 mm X 1 mm X 15 mm at 77°K,

a spikey behavior similar to that reported previously at 4.2 * K was obtained. This is

illustrated in Fig. XXIII-29, where the output of the radiometer is displayed on an x-y

recorder as a function of the peak voltage applied to the sample. The occurrence of a

given spike is a very sensitive function of the precise electric field of the DC pulse (it

is a much less sensitive function of the applied magnetic field). Thus, to obtain clear

reproducible spikes, great care must be taken to satisfy the following conditions: (a)

the DC pulse must be uniform to better than 1% over the duration of the sampling gate;

and (b) the electric field must be reproducible within the same accuracy from pulse to

pulse over the integration time of the radiometer. In order to increase the resolution
1

of the spike, the IF gate width was reduced from the 2-p.sec value previously used to

1/2 sec. The current pulse was 3 iLsec wide at a repetition rate of 200 pulses/sec.

This spikey behavior was observed for both a positive and negative polarity
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Fig. XXIII-30.

Noise-power output as a function of electric
field for one value of magnetic field, at 77°K.
The observation frequency was 3 GHz.
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of the current pulse. It was also observed in samples as short as 7.5 mm.

The dependence of the spikes as a function of the applied DC electric and magnetic

fields is illustrated in Fig. XXIII-30. The open circles joined by the dashed line repre-

sents the threshold characteristics for the onset of the noise spikes at a fixed frequency

of observation equal to 3 GHz. The solid circles and the solid lines illustrate the E -B
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Fig. XXIII-31. Frequency of one microwave spike as a function
of electric field for two values of magnetic field
at 77*K.

characteristics above threshold of a few prominent spikes.

It is interesting to note that the dashed line appears to trace out the threshold curve

for the "continuum" microwave emission previously reported. 1 It is therefore suggested

that the previously observed continuum noise is merely a superposition of spikes that

were not previously resolved, because of the poor current waveform of the breakdown

pulse.

In Fig. XXIII-31 the frequency voltage spectra are plotted for one prominent spike,

at two different magnetic field values. It has been observed experimentally that the

character of this frequency voltage curve may be different for other spikes, and work

is now under way to verify this.

E. V. George
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2. INTERACTIONS OF ACOUSTIC WAVES WITH DRIFTING ELECTRONS

IN A MAGNETIC FIELD

We have previously studied unstable electron-phonon interactions in a magnetic

field, using a Boltzmann-type description for the electrons.1-3 Such a description
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allowed us to look at high frequencies at which the electron's mean-free path was com-

parable to or larger than an acoustic wavelength. Because of the complexity of such

analyses, the evaluation of growth rates and of their dependence upon physical parame-

ters has been carried out for only the simplest geometries of applied electric and mag-

netic fields.

In this report we return to a simpler description of the electrons, which is valid for

lower frequencies at which their mean-free path is short compared with an acoustic

wavelength. This simplification allows us to explore various geometries of the applied

electric and magnetic fields, and to determine the maximum acoustic amplification as

a function of drift velocity, magnetic field, frequency of operation, and so forth.

Electron Plasma System

We assume the electrons to be described by a simple set of transport model equa-

tions

nvmv + 7(nKT) = ne(E +vX B) (1)

V (n)+ 0, (2)

where n is the particle density, v is the effective collision frequency, m is the effective

mass, V is the macroscopic velocity, K is Boltzmann's constant, T is the effective tem-

perature - a constant, e is the electron's charge, and E and B are, respectively, the

electric and magnetic fields. In Eq. 1 it is assumed that v >> w and v >> q * w, where o

is the frequency, q is the wave vector, and w is the electron's velocity (thermal and/or

drift).

In the presence of time-invariant and uniform fields E and Bo, and a uniform den-

sity no, the electrons acquire a drift velocity vo, given by the solution of Eq. 1,

vo = - b " Eo, (3)

where t = -e/mv is the mobility,

1 -b

1+b +b1 + b 1 + bz

b = b 1 0 (4)
2 2

1+b 1+b

0 0 1

and b = B B = w/v.

Assuming first-order electrostatic (E 1=-V) perturbations of the form exp j(wt- .'r),
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we can determine from Eqs. 1-4 the effective longitudinal conductivity, - = -jwenl/q 2 
1,

wb
q(, q) = o (5)

w-q.v 0 -jq bD

where o = -eno is the DC conductivity, D = KT/mv is the diffusion constant, and

q*b.q 2 2b q qI + b cos 0 (6)
b 2 2 (6)

q 1+

where 0 is the angle between q and B .o

Longitudinal Electron-Phonon Interaction

We assume that the electrons are coupled to the acoustic wave by piezoelectric

and/or deformation potential effects in the solid. Let the effective longitudinal coupling

constants be e (C/m 2 ) for piezoelectric coupling, and CD (volts) for deformation poten-

tial coupling. The coupled longitudinal electron-phonon dispersion relation is then

22 - 2 22
(w2-q2v 2 K (w,q) = q v s  , (7)

where

2
e 2

2 P 2 CDEL
= C + q 2 (8)

L Ce

K -1q) = I + jwE L  (9)

with vs the sound-wave velocity, C the elastic constant, EL the lattice dielectric con-

stant, and we have assumed that the sound waves in the absence of the free electrons

(that is, for a-=0) are unattenuated. Usually, the coupling is weak (P 20), and Eq. 7 can be

solved approximately. We expect the electron-phonon instability to be convective, hence

let w be real and q = qr + jqi.. From Eq. 7 we then have approximately
W1

q v_ (10)rv
s

S p2 Im 1(11)
i s K(w, r)

Using Eqs. 9, and introducing the dielectric relaxation frequency w = 0 /EL, we can
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write (11) in the form

SRe
w a-0

q 1 P2 (12)i =  2 v 2

o

Equations 10-12 are general; no particular description of the electron plasma sys-

tem is assumed, that is, a(w, q). We now assume that cp(w, q) is given by Eq. 5. Sub-

1 2 00 bL 5
q2 .P D 2  (13)i-2 v 2

262 + b +

where

qr Vo
6= - 1 (14)

describes the effective deviation of the drift velocity from the acoustic phase velocity,

and wD = v/D is the diffusion frequency.

Maximum Acoustic Gain Conditions

Equation 13 has a maximum with respect to frequency w. The frequency for maxi-

mum growth is

max = -wO (15)

To take an example: For n-type InSb at 77K with n = 2 X 10 14/cm, =

5 X 105 cm2/volt-sec, m = 0.013 me, and EL = 16E , we find wo = 10 13/sec, wD -

5 X 107/sec, and ax 2.2 X 10 1 0 /sec.

The growth rate qi of Eq. 13 also has a maximum with respect to 6 and b, when

62 = b w ) (16)

Combining Eqs. 15 and 16, we find

5 = 2b ,0 (17)
' (D /
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Fig. XXIII-32. Geometries of applied electric and magnetic fields
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Fig. XXIII-33. Maximum growth rate parameters for the corresponding
three cases of Fig. XXIII-32. The values of E and B are

those pertaining to the example of InSb given in the text.
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and substituting in (13), we obtain the maximum growth rate

1 2 max
(q ) P . (18)imax 8 v

For InSb parameters used above, with P2= 3.2 X 10- 4 and v =4X10 cm/sec, (q.)s imax
2.2/cm, that is, approximately 20 db/cm.

The conditions implied by (17) can be evaluated for several geometries of interest.

Three such cases are illustrated in Fig. XXIII-32. The maximum growth rate condi-

tions for these three cases have been calculated for (wo/D 1)/2 = 500, which corre-

sponds to the parameters used above for InSb, and they are plotted in Fig. XXIII-33.

A. Bers
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