8 research outputs found
Novel Hybrid Ferromagnetic Fe–Co/Nanodiamond Nanostructures: Influence of Carbon on Their Structural and Magnetic Properties
This study introduces a novel magnetic nanohybrid material consisting of ferromagnetic (FM) bcc Fe–Co nanoparticles (NPs) grown on nanodiamond (ND) nanotemplates. A combination of wet chemistry, which produces chemical precursors and their subsequent thermal treatment under vacuum, was utilized for its development. The characterization and study of the prepared samples performed with a range of specialized experimental techniques reveal that thermal treatment of the as-prepared hybrid precursors under a range of annealing conditions leads to the development of Co-rich Fe–Co alloy NPs, with average sizes in the range of 6–10 nm, that exhibit uniform distribution on the surfaces of the ND nanotemplates and demonstrate FM behavior throughout a temperature range from 2 K to 400 K, with maximum magnetization values ranging between 18.9 and 21.1 emu/g and coercivities ranging between 112 and 881 Oe. Moreover, 57Fe Mössbauer spectroscopy reveals that apart from the predominant bcc FM Fe–Co phase, iron atoms also participate in the formation of a secondary martensitic-type Fe–Co phase. The emergence of this distinctive phase is attributed to the diffusion of carbon atoms within the Fe–Co lattices during their formation at elevated temperatures. The source of these carbon atoms is related to the unique morphological properties of the ND growth matrices, which facilitate surface sp2 formations. Apart from their diffusion within the Fe–Co NP lattice, the carbon atoms also reconstruct layered graphitic-type nanostructures enveloping the metallic alloy NPs. These non-typical nanohybrid materials, reported here for the first time in the literature, hold significant potential for use in applications related, but not limited to, biomedicine, biopharmaceutics, catalysis, and other various contemporary technological fields
Intriguing Prospects of a Novel Magnetic Nanohybrid Material: Ferromagnetic FeRh Nanoparticles Grown on Nanodiamonds
A novel endeavor based on the synthesis, characterization and study of a hybrid crystalline magnetic nanostructured material composed of bimetallic iron–rhodium nanoalloys, grown on nanodiamond nanotemplates, is reported in this study. The development of this hybrid magnetic nanomaterial is grounded in the combination of wet chemistry and thermal annealing under vacuum. In order to assess, evaluate and interpret the role and special properties of the nanodiamond supporting nanotemplates on the growth and properties of the bimetallic ferromagnetic Fe–Rh nanoparticles on their surfaces, unsupported free FeRh nanoparticles of the same nominal stoichiometry as for the hybrid sample were also synthesized. The characterization and study of the prepared samples with a range of specialized experimental techniques, including X-ray diffraction, transmission and scanning transmission electron microscopy with energy dispersive X-ray analysis, magnetization and magnetic susceptibility measurements and 57Fe Mössbauer spectroscopy, reveal that thermal annealing of the hybrid sample under specific conditions (vacuum, 700 °C, 30 min) leads to the formation of a rhodium-rich FeRh alloy nanostructured phase, with an average particle size of 4 nm and good dispersion on the surfaces of the nanodiamond nanotemplates and hard ferromagnetic characteristics at room temperature (coercivity of ~500 Oe). In contrast, thermal annealing of the unsupported free nanoparticle sample under the same conditions fails to deliver ferromagnetic characteristics to the FeRh nanostructured alloy phase, which shows only paramagnetic characteristics at room temperature and spin glass ordering at low temperatures. The ferromagnetic nanohybrids are proposed to be exploited in a variety of important technological applications, such as magnetic recording, magnetic resonance imaging contrast and magnetic hyperthermia agents
Intriguing Prospects of a Novel Magnetic Nanohybrid Material: Ferromagnetic FeRh Nanoparticles Grown on Nanodiamonds
A novel endeavor based on the synthesis, characterization and study of a hybrid crystalline magnetic nanostructured material composed of bimetallic iron–rhodium nanoalloys, grown on nanodiamond nanotemplates, is reported in this study. The development of this hybrid magnetic nanomaterial is grounded in the combination of wet chemistry and thermal annealing under vacuum. In order to assess, evaluate and interpret the role and special properties of the nanodiamond supporting nanotemplates on the growth and properties of the bimetallic ferromagnetic Fe–Rh nanoparticles on their surfaces, unsupported free FeRh nanoparticles of the same nominal stoichiometry as for the hybrid sample were also synthesized. The characterization and study of the prepared samples with a range of specialized experimental techniques, including X-ray diffraction, transmission and scanning transmission electron microscopy with energy dispersive X-ray analysis, magnetization and magnetic susceptibility measurements and 57Fe Mössbauer spectroscopy, reveal that thermal annealing of the hybrid sample under specific conditions (vacuum, 700 °C, 30 min) leads to the formation of a rhodium-rich FeRh alloy nanostructured phase, with an average particle size of 4 nm and good dispersion on the surfaces of the nanodiamond nanotemplates and hard ferromagnetic characteristics at room temperature (coercivity of ~500 Oe). In contrast, thermal annealing of the unsupported free nanoparticle sample under the same conditions fails to deliver ferromagnetic characteristics to the FeRh nanostructured alloy phase, which shows only paramagnetic characteristics at room temperature and spin glass ordering at low temperatures. The ferromagnetic nanohybrids are proposed to be exploited in a variety of important technological applications, such as magnetic recording, magnetic resonance imaging contrast and magnetic hyperthermia agents
Structure, stability and mechanical performance of AlN: ag nanocomposite films
Nanocomposite films consisting of a hard AlN matrix incorporating soft Ag inclusions (AlN:Ag) and which are suitable for protective coatings are presented. The growth has been performed using Pulsed Laser Deposition and the film structural properties, such as nanoparticle size and distribution, were studied in relation to the growth parameters, such as metal content and PLD working pressure and laser power. High resolution transmission electron microscopy and nanoindentation were employed in order to determine the film composition, inclusions' crystal structure and mechanical properties respectively. The employed Ag nanoparticles had average sizes ranging between 3–10 nm and were clearly separated by the matrix material. The critical parameters, which determine the nanoparticle size and distribution, and the decisive role of the latter on the mechanical performance of AlN:Ag nanocomposite films are establishe
Observation of Surface Dirac Cone in High-Quality Ultrathin Epitaxial Bi<sub>2</sub>Se<sub>3</sub> Topological Insulator on AlN(0001) Dielectric
Bi<sub>2</sub>Se<sub>3</sub> topological insulators (TIs) are grown on AlN(0001)/Si(111) substrates by molecular beam epitaxy. In a one-step growth at optimum temperature of 300 °C, Bi<sub>2</sub>Se<sub>3</sub> bonds strongly with AlN without forming interfacial reaction layers. This produces high epitaxial quality Bi<sub>2</sub>Se<sub>3</sub> single crystals with a perfect registry with the substrate and abrupt interfaces, allowing thickness scaling down to three quintuple layers (QL) without jeopardizing film quality. It is found by angle-resolved photoelectron spectroscopy that, remarkably, Bi<sub>2</sub>Se<sub>3</sub> films maintain the 3D TI properties at very low thickness of 3QL (∼2.88 nm), exhibiting top surface gapless metallic states in the form of a Dirac cone