29,814 research outputs found

    Wall turbulence control

    Get PDF
    A variety of wall turbulence control devices which were experimentally investigated are discussed; these include devices for burst control, alteration of outer flow structures, large eddy substitution, increased heat transfer efficiency, and reduction of wall pressure fluctuations. Control of pre-burst flow was demonstrated with a single, traveling surface depression which is phase-locked to elements of the burst production process. Another approach to wall turbulence control is to interfere with the outer layer coherent structures. A device in the outer part of a boundary layer was shown to suppress turbulence and reduce drag by opposing both the mean and unsteady vorticity in the boundary layer. Large eddy substitution is a method in which streamline curvature is introduced into the boundary layer in the form of streamwise vortices. Riblets, which were already shown to reduce turbulent drag, were also shown to exhibit superior heat transfer characteristics. Heat transfer efficiency as measured by the Reynolds Analogy Factor was shown to be as much as 36 percent greater than a smooth flat plate in a turbulent boundary layer. Large Eddy Break-Up (LEBU) which are also known to reduce turbulent drag were shown to reduce turbulent wall pressure fluctuation

    INTRINSIC MECHANISM FOR ENTROPY CHANGE IN CLASSICAL AND QUANTUM EVOLUTION

    Get PDF
    It is shown that the existence of a time operator in the Liouville space representation of both classical and quantum evolution provides a mechanism for effective entropy change of physical states. In particular, an initially effectively pure state can evolve under the usual unitary evolution to an effectively mixed state.Comment: 20 pages. For more information or comments contact E. Eisenberg at [email protected] (internet)

    On the dynamics of a twisted disc immersed in a radiation field

    Full text link
    We study the dynamics of a twisted tilted disc under the influence of an external radiation field. Assuming the effect of absorption and reemission/scattering is that a pressure is applied to the disc surface where the local optical depth is of order unity, we determine the response of the vertical structure and the influence it has on the possibility of instability to warping. We derive a pair of equations describing the evolution of a small tilt as a function of radius in the small amplitude regime that applies to both the diffusive and bending wave regimes. We also study the non linear vertical response of the disc numerically using an analogous one dimensional slab model. For global warps, we find that in order for the disc vertical structure to respond as a quasi uniform shift or tilt, as has been assumed in previous work, the product of the ratio of the external radiation momentum flux to the local disc mid plane pressure, where it is absorbed, with the disc aspect ratio should be significantly less than unity. Namely, this quantity should be of the order of or smaller than the ratio of the disc gas density corresponding to the layer intercepting radiation to the mid plane density, λ1\lambda \ll 1. When this condition is not satisfied the disc surface tends to adjust so that the local normal becomes perpendicular to the radiation propagation direction. In this case dynamical quantities determined by the disc twist and warp tend to oscillate with a large characteristic period Tλ1TKT_{*}\sim \lambda^{-1}T_{K}, where TKT_{K} is some 'typical' orbital period of a gas element in the disc. The possibility of warping instability then becomes significantly reduced. In addition, when the vertical response is non uniform, the possible production of shocks may lead to an important dissipation mechanism.Comment: submitted to MNRA

    `c' is the speed of light, isn't it?

    Full text link
    Theories proposing a varying speed of light have recently been widely promoted under the claim that they offer an alternative way of solving the standard cosmological problems. Recent observational hints that the fine structure constant may have varied during over cosmological scales also has given impetus to these models. In theoretical physics the speed of light, cc, is hidden in almost all equations but with different facets that we try to distinguish. Together with a reminder on scalar-tensor theories of gravity, this sheds some light on these proposed varying speed of light theories.Comment: 14 pages, Late

    Yrast line for weakly interacting trapped bosons

    Full text link
    We compute numerically the yrast line for harmonically trapped boson systems with a weak repulsive contact interaction, studying the transition to a vortex state as the angular momentum L increases and approaches N, the number of bosons. The L=N eigenstate is indeed dominated by particles with unit angular momentum, but the state has other significant components beyond the pure vortex configuration. There is a smooth crossover between low and high L with no indication of a quantum phase transition. Most strikingly, the energy and wave function appear to be analytical functions of L over the entire range 2 < L < N. We confirm the structure of low-L states proposed by Mottelson, as mainly single-particle excitations with two or three units of angular momentum.Comment: 9 pages, 3 EPS-figures, uses psfig.st

    Hybrid inflation followed by modular inflation

    Full text link
    Inflationary models with a superheavy scale F-term hybrid inflation followed by an intermediate scale modular inflation are considered. The restrictions on the power spectrum P_R of curvature perturbation and the spectral index n_s from the recent data within the power-law cosmological model with cold dark matter and a cosmological constant can be met provided that the number of e-foldings N_HI* suffered by the pivot scale k_*=0.002/Mpc during hybrid inflation is suitably restricted. The additional e-foldings needed for solving the horizon and flatness problems are generated by modular inflation with a string axion as inflaton. For central values of P_R and n_s, the grand unification scale comes out, in the case of standard hybrid inflation, close to its supersymmetric value M_GUT=2.86 x 10^16 GeV, the relevant coupling constant is relatively large (0.005-0.14), and N_HI* is between 10 and 21.7. In the shifted [smooth] hybrid inflation case, the grand unification scale can be identified with M_GUT for N_HI*=21 [N_HI*=18].Comment: 13 pages including 3 figures, uses ws-ijmpa.cls, minor corrections included, talk given at the CTP Symposium on Supersymmetry at LHC: Theoretical and Experimental Perspectives, British University in Egypt (BUE), Cairo, 11-14 March 2007 (to appear in the proceedings

    High pressure phases in highly piezoelectric Pb(Zr0.52Ti0.48)O3

    Get PDF
    Two novel room-temperature phase transitions are observed, via synchrotron x-ray diffraction and Raman spectroscopy, in the Pb(Zr0.52Ti0.48)O3 alloy under hydrostatic pressures up to 16 GPa. A monoclinic (M)-to-rhombohedral (R1) phase transition takes place around 2-3 GPa, while this R1 phase transforms into another rhombohedral phase, R2, at about 6-7 GPa. First-principles calculations assign the R3m and R3c symmetry to R1 and R2, respectively, and reveal that R2 acts as a pressure-induced structural bridge between the polar R3m and a predicted antiferrodistortive R-3c phase.Comment: REVTeX, 4 pages with 3 figures embedded. Figs 1 and 3 in colo
    corecore