55,248 research outputs found

    Perfect Anomalous Reflection with a Binary Huygens' Metasurface

    Full text link
    In this paper we propose a new metasurface that is able to reflect a known incoming electromagnetic wave into an arbitrary direction, with perfect power efficiency. This seemingly simple task, which we hereafter call perfect anomalous reflection, is actually highly non-trivial due to the differing wave impedances and complex interference between the incident and reflected waves. Heretofore, proposed metasurfaces which achieve perfect anomalous reflection require complicated, deeply subwavelength and/or multilayer element structures which allow them to couple to and from leaky and/or evanescent waves. In contrast, we demonstrate that using a Binary Huygens' Metasurface (BHM) --- a passive and lossless metasurface with only two cells per period --- perfect anomalous reflection can be achieved over a wide angular and frequency range. Through simulations and experiments at 24 GHz, we show that a properly designed BHM can anomalously reflect an incident electromagnetic wave from θi=50∘\theta_i = 50^\circ to θr=−22.5∘\theta_r = -22.5^\circ, with perfect power efficiency to within experimental precision

    Exceeding the asymptotic limit of polymer drag reduction

    Get PDF
    The drag of turbulent flows can be drastically decreased by addition of small amounts of high molecular weight polymers. While drag reduction initially increases with polymer concentration, it eventually saturates to what is known as the maximum drag reduction (MDR) asymptote; this asymptote is generally attributed to the dynamics being reduced to a marginal yet persistent state of subdued turbulent motion. Contrary to this accepted view we will show in the following that for an appropriate choice of parameters polymers can reduce the drag beyond the suggested asymptotic limit, eliminating turbulence and giving way to laminar flow. However at higher polymer concentrations the laminar state becomes unstable, resulting in a fluctuating flow with the characteristic drag of the MDR asymptote. The asymptotic state is hence dynamically disconnected from ordinary turbulence.Comment: 6 pages, 6 figure

    Dynamics of viscoelastic pipe flow in the maximum drag reduction limit

    Full text link
    Polymer additives can substantially reduce the drag of turbulent flows and the upper limit, the so called "maximum drag reduction" (MDR) asymptote is universal, i.e. independent of the type of polymer and solvent used. Until recently, the consensus was that, in this limit, flows are in a marginal state where only a minimal level of turbulence activity persists. Observations in direct numerical simulations using minimal sized channels appeared to support this view and reported long "hibernation" periods where turbulence is marginalized. In simulations of pipe flow we find that, indeed, with increasing Weissenberg number (Wi), turbulence expresses long periods of hibernation if the domain size is small. However, with increasing pipe length, the temporal hibernation continuously alters to spatio-temporal intermittency and here the flow consists of turbulent puffs surrounded by laminar flow. Moreover, upon an increase in Wi, the flow fully relaminarises, in agreement with recent experiments. At even larger Wi, a different instability is encountered causing a drag increase towards MDR. Our findings hence link earlier minimal flow unit simulations with recent experiments and confirm that the addition of polymers initially suppresses Newtonian turbulence and leads to a reverse transition. The MDR state on the other hand results from a separate instability and the underlying dynamics corresponds to the recently proposed state of elasto-inertial-turbulence (EIT).Comment: 18 pages, 5 figure

    Subsonic aerodynamic characteristics of a proposed advanced manned launch system orbiter configuration

    Get PDF
    The Advanced Manned Launch System is a proposed near-term technology, two-stage, fully reusable launch system that consists of an unmanned glide-back booster and a manned orbiter. An orbiter model that featured a large fuselage and an aft delta wing with tip fins was tested in the Langley 7- by 10-Foot High-Speed Tunnel. A crew cabin, large payload fairing, and crew access tunnel were mounted on the upper body. The results of the investigation indicated that the configuration was longitudinally stable to an angle of attack of about 6 deg about a center-of-gravity position of 0.7 body length. The model had an untrimmed lift-drag ratio of 6.6, but could not be trimmed at positive lift. The orbiter model was also directionally unstable. The payload fairing was responsible for about half the instability. The tip-fin controllers, which are designed as active controls to produce artificial directional stability, were effective in producing yawing moment, but sizable adverse rolling moment occurred at angles of attack above 6 deg. Differential deflection of the elevon surfaces was effective in producing rolling moment with only small values of adverse yawing moment

    Diet of oceanic loggerhead sea turtles (Caretta caretta) in the central North Pacific

    Get PDF
    Diet analysis of 52 loggerhead sea turtles (Caretta caretta) collected as bycatch from 1990 to 1992 in the high-seas driftnet fishery operating between lat. 29.5°N and 43°N and between long. 150°E and 154°W demonstrated that these turtles fed predominately at the surface; few deeper water prey items were present in their stomachs. The turtles ranged in size from 13.5 to 74.0 cm curved carapace length. Whole turtles (n =10) and excised stomachs (n= 42) were frozen and transported to a laboratory for analysis of major faunal components. Neustonic species accounted for four of the five most common prey taxa. The most common prey items were Janthina spp. (Gastropoda); Carinaria cithara Benson 1835 (Heteropoda); a chondrophore, Velella velella (Hydrodia); Lepas spp. (Cirripedia), Planes spp. (Decapoda: Grapsidae), and pyrosomas (Pyrosoma spp.)
    • …
    corecore