9,269 research outputs found

    Ecological research in the Large Scale Biosphere Atmosphere Experiment in Amazonia: A discussion of early results

    Get PDF
    The Large-scale Biosphere–Atmosphere Experiment in Amazonia (LBA) is a multinational, interdisciplinary research program led by Brazil. Ecological studies in LBA focus on how tropical forest conversion, regrowth, and selective logging influence carbon storage, nutrient dynamics, trace gas fluxes, and the prospect for sustainable land use in the Amazon region. Early results from ecological studies within LBA emphasize the variability within the vast Amazon region and the profound effects that land-use and land-cover changes are having on that landscape. The predominant land cover of the Amazon region is evergreen forest; nonetheless, LBA studies have observed strong seasonal patterns in gross primary production, ecosystem respiration, and net ecosystem exchange, as well as phenology and tree growth. The seasonal patterns vary spatially and interannually and evidence suggests that these patterns are driven not only by variations in weather but also by innate biological rhythms of the forest species. Rapid rates of deforestation have marked the forests of the Amazon region over the past three decades. Evidence from ground-based surveys and remote sensing show that substantial areas of forest are being degraded by logging activities and through the collapse of forest edges. Because forest edges and logged forests are susceptible to fire, positive feedback cycles of forest degradation may be initiated by land-use-change events. LBA studies indicate that cleared lands in the Amazon, once released from cultivation or pasture usage, regenerate biomass rapidly. However, the pace of biomass accumulation is dependent upon past land use and the depletion of nutrients by unsustainable land-management practices. The challenge for ongoing research within LBA is to integrate the recognition of diverse patterns and processes into general models for prediction of regional ecosystem function

    Monitoring Self-Perceived Occupational Health inequities in Central america, 2011 and 2018

    Get PDF
    Objectives. to analyze changes in occupational health inequity between 2011 and 2018 among workers in Central America. Methods. Data were collected by face-to-face interviews at the workers\u27 homes for the 2 Central America Working Conditions Surveys (n = 12 024 in 2011 and n = 9030 in 2018). We estimated health inequity gaps by means of absolute and relative population attributable risks and the weighted Keppel index. We stratified all analyses by gender. Results. Between 2011 and 2018, the proportion of workers reporting poor self-perceived health decreased both in women (from 32% to 29%) and men (from 33% to 30%). However, the health inequity gaps remained wide in the 4 stratifiers. Measured by the Keppel index, health inequity gaps between countries increased from 22% to 39% in women and from 20% to 29% in men. Conclusions. While health improved between 2011 and 2018, health inequity gaps remained wide. Wider health inequity gaps were observed between countries than by gender, age, occupation, or education. Public Health Implications. This first benchmark of occupational health inequities in Central America could be useful when developing and evaluating the impact of public policies on work

    Identifying alemtuzumab as an anti-myeloid cell antiangiogenic therapy for the treatment of ovarian cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Murine studies suggest that myeloid cells such as vascular leukocytes (VLC) and Tie2<sup>+ </sup>monocytes play a critical role in tumor angiogenesis and vasculogenesis. Myeloid cells are a primary cause of resistance to anti-VEGF therapy. The elimination of these cells from the tumor microenvironment significantly restricts tumor growth in both spontaneous and xenograft murine tumor models. Thus animal studies indicate that myeloid cells are potential therapeutic targets for solid tumor therapy. Abundant VLC and Tie2<sup>+ </sup>monocytes have been reported in human cancer. Unfortunately, the importance of VLC in human cancer growth remains untested as there are no confirmed therapeutics to target human VLC.</p> <p>Methods</p> <p>We used FACS to analyze VLC in ovarian and non-ovarian tumors, and characterize the relationship of VLC and Tie2-monocytes. We performed qRT-PCR and FACS on human VLC to assess the expression of the CD52 antigen, the target of the immunotherapeutic Alemtuzumab. We assessed Alemtuzumab's ability to induce complement-mediated VLC killing in vitro and in human tumor ascites. Finally we assessed the impact of anti-CD52 immuno-toxin therapy on murine ovarian tumor growth.</p> <p>Results</p> <p>Human VLC are present in ovarian and non-ovarian tumors. The majority of VLC appear to be Tie2+ monocytes. VLC and Tie2+ monocytes express high levels of CD52, the target of the immunotherapeutic Alemtuzumab. Alemtuzumab potently induces complement-mediated lysis of VLC in vitro and ex-vivo in ovarian tumor ascites. Anti-CD52 immunotherapy targeting VLC restricts tumor angiogenesis and growth in murine ovarian cancer.</p> <p>Conclusion</p> <p>These studies confirm VLC/myeloid cells as therapeutic targets in ovarian cancer. Our data provide critical pre-clinical evidence supporting the use of Alemtuzumab in clinical trials to test its efficacy as an anti-myeloid cell antiangiogenic therapeutic in ovarian cancer. The identification of an FDA approved anti-VLC agent with a history of clinical use will allow immediate proof-of-principle clinical trials in patients with ovarian cancer.</p

    Connecting the cosmic infrared background to the X-ray background

    Full text link
    We estimate the contribution of AGNs and of their host galaxies to the infrared background. We use the luminosity function and evolution of AGNs recently determined by the hard X-ray surveys, and new Spectral Energy Distributions connecting the X-ray and the infrared emission, divided in intervals of absorption. These two ingredients allow us to determine the contribution of AGNs to the infrared background by using mostly observed quantities, with only minor assumptions. We obtain that AGN emission contributes little to the infrared background (<<5% over most of the infrared bands), implying that the latter is dominated by star formation. However, AGN host galaxies may contribute significantly to the infrared background, and more specifically 10--20% in the 1--20μ\mum range and \sim5% at λ<60μm\lambda<60\mu m. We also give the contribution of AGNs and of their host galaxies to the source number counts in various infrared bands, focusing on those which will be observed with Spitzer. We also report a significant discrepancy between the expected contribution of AGN hosts to the submm background and bright submm number counts with the observational constraints. We discuss the causes and implications of this discrepancy and the possible effects on the Spitzer far-IR bands.Comment: to appear in MNRAS, replaced with accepted version, paper shortened, results unchange

    Pulmonary exacerbations in early cystic fibrosis lung disease are marked by strong modulation of CD3 and PD-1 on luminal T cells

    Get PDF
    BackgroundIn chronic cystic fibrosis (CF) lung disease, neutrophilic inflammation and T-cell inhibition occur concomitantly, partly due to neutrophil-mediated release of the T-cell inhibitory enzyme Arg1. However, the onset of this tonic inhibition of T cells, and the impact of pulmonary exacerbations (PEs) on this process, remain unknown.MethodsChildren with CF aged 0-5 years were enrolled in a longitudinal, single-center cohort study. Blood (n = 35) and bronchoalveolar lavage (BAL) fluid (n = 18) were collected at stable outpatient clinic visits or inpatient PE hospitalizations and analyzed by flow cytometry (for immune cell presence and phenotype) and 20-plex chemiluminescence assay (for immune mediators). Patients were categorized by PE history into (i) no prior PE, (ii) past history of PE prior to stable visit, or (iii) current PE.ResultsPEs were associated with increased concentration of both pro- and anti-inflammatory mediators in BAL, and increased neutrophil frequency and G-CSF in circulation. PE BAL samples showed a trend toward an increased frequency of hyperexocytic “GRIM” neutrophils, which we previously identified in chronic CF. Interestingly, expression levels of the T-cell receptor associated molecule CD3 and of the inhibitory programmed death-1 (PD-1) receptor were respectively decreased and increased on T cells from BAL compared to blood in all patients. When categorized by PE status, CD3 and PD-1 expression on blood T cells did not differ among patients, while CD3 expression was decreased, and PD-1 expression was increased on BAL T cells from patients with current PE.ConclusionsOur findings suggest that airway T cells are engaged during early-life PEs, prior to the onset of chronic neutrophilic inflammation in CF. In addition, increased blood neutrophil frequency and a trend toward increased BAL frequency of hyperexocytic neutrophils suggest that childhood PEs may progressively shift the balance of CF airway immunity towards neutrophil dominance

    Microbiological, histological, immunological, and toxin response to antibiotic treatment in the mouse model of Mycobacterium ulcerans disease.

    Get PDF
    Mycobacterium ulcerans infection causes a neglected tropical disease known as Buruli ulcer that is now found in poor rural areas of West Africa in numbers that sometimes exceed those reported for another significant mycobacterial disease, leprosy, caused by M. leprae. Unique among mycobacterial diseases, M. ulcerans produces a plasmid-encoded toxin called mycolactone (ML), which is the principal virulence factor and destroys fat cells in subcutaneous tissue. Disease is typically first manifested by the appearance of a nodule that eventually ulcerates and the lesions may continue to spread over limbs or occasionally the trunk. The current standard treatment is 8 weeks of daily rifampin and injections of streptomycin (RS). The treatment kills bacilli and wounds gradually heal. Whether RS treatment actually stops mycolactone production before killing bacilli has been suggested by histopathological analyses of patient lesions. Using a mouse footpad model of M. ulcerans infection where the time of infection and development of lesions can be followed in a controlled manner before and after antibiotic treatment, we have evaluated the progress of infection by assessing bacterial numbers, mycolactone production, the immune response, and lesion histopathology at regular intervals after infection and after antibiotic therapy. We found that RS treatment rapidly reduced gross lesions, bacterial numbers, and ML production as assessed by cytotoxicity assays and mass spectrometric analysis. Histopathological analysis revealed that RS treatment maintained the association of the bacilli with (or within) host cells where they were destroyed whereas lack of treatment resulted in extracellular infection, destruction of host cells, and ultimately lesion ulceration. We propose that RS treatment promotes healing in the host by blocking mycolactone production, which favors the survival of host cells, and by killing M. ulcerans bacilli

    Association of molecular senescence markers in late-life depression with clinical characteristics and treatment outcome

    Get PDF
    Importance: Many older adults with depression do not experience remission with antidepressant treatment, and markers of cellular senescence in late-life depression (LLD) are associated with greater severity of depression, greater executive dysfunction, and higher medical illness burden. Since these clinical characteristics are associated with remission in LLD, molecular and cellular senescence abnormalities could be a possible biological mechanism underlying poor treatment response in this population. Objective: To examine whether the senescence-associated secretory phenotype (SASP) index was associated with the likelihood of remission from a depressive episode in older adults. Design, Setting, and Participants: A nonrandomized, open-label clinical trial was conducted between August 2009 and August 2014 in Pittsburgh, Pennsylvania; St Louis, Missouri; and Toronto, Ontario, Canada, with older adults in a current major depressive episode according to the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition, Text Revision) diagnostic criteria. Data from biomarker analyses were reported according to the clinical trial archived plasma samples run in March 2021. Data were analyzed from June to November 2021. Exposure: Venlafaxine extended release (dose ranging from 37.5 mg to 300 mg daily) for up to 12 weeks. Main Outcomes and Measures: The association between a composite biomarker-based index (SASP index) and treatment remission in older adults with major depression was measured using clinical data and blood samples. Results: There were 416 participants with a mean (SD) age of 60.02 (7.13) years; 64% (265 participants) were self-reported female, and the mean (SD) Montgomery-Asberg Depression Rating Scale score was 26.6 (5.7). Higher SASP index scores were independently associated with higher rates of nonremission, with an increase of 1 unit in the SASP index score increasing the odds of nonremission by 19% (adjusted odds ratio, 1.19; 95% CI, 1.05-1.35; P = .006). In contrast, no individual SASP factors were associated with remission in LLD. Conclusions and Relevance: Using clinical data and blood samples from a nonrandomized clinical trial, the results of this study suggest that molecular and cellular senescence, as measured with the SASP index, is associated with worse treatment outcomes in LLD. Combining this index score reflecting interrelated biological processes with other molecular, clinical, and neuroimaging markers may be useful in evaluating antidepressant treatment outcomes. These findings inform a path forward for geroscience-guided interventions targeting senescence to improve remission rates in LLD. Trial Registration: ClinicalTrials.gov Identifier: NCT00892047
    corecore