5,357 research outputs found

    Placental Transport of Zidovudine in the Rhesus Monkey

    Get PDF
    Objective: This study was undertaken to characterize the pharmacokinetics of zidovudine (ZDV) and ZDV-glucuronide (ZDVG) in the material and :fetal circulations of the rhesus monkey

    Nucleon-Gold Collisions at 200 AGeV Using Tagged d+Au Interactions in PHOBOS

    Get PDF
    Forward calorimetry in the PHOBOS detector has been used to study charged hadron production in d+Au, p+Au and n+Au collisions at sqrt(s_nn) = 200 GeV. The forward proton calorimeter detectors are described and a procedure for determining collision centrality with these detectors is detailed. The deposition of energy by deuteron spectator nucleons in the forward calorimeters is used to identify p+Au and n+Au collisions in the data. A weighted combination of the yield of p+Au and n+Au is constructed to build a reference for Au+Au collisions that better matches the isospin composition of the gold nucleus. The p_T and centrality dependence of the yield of this improved reference system is found to match that of d+Au. The shape of the charged particle transverse momentum distribution is observed to extrapolate smoothly from pbar+p to central d+Au as a function of the charged particle pseudorapidity density. The asymmetry of positively- and negatively-charged hadron production in p+Au is compared to that of n+Au. No significant asymmetry is observed at mid-rapidity. These studies augment recent results from experiments at the LHC and RHIC facilities to give a more complete description of particle production in p+A and d+A collisions, essential for the understanding the medium produced in high energy nucleus-nucleus collisions.Comment: 17 pages, 18 figure

    Centrality dependence of charged hadron transverse momentum spectra in d+Au collisions at sqrt(s_NN) = 200 GeV

    Full text link
    We have measured transverse momentum distributions of charged hadrons produced in d+Au collisions at sqrt(s_NN) = 200 GeV. The spectra were obtained for transverse momenta 0.25 < p_T < 6.0 GeV/c, in a pseudorapidity range of 0.2 < eta < 1.4 in the deuteron direction. The evolution of the spectra with collision centrality is presented in comparison to p+pbarcollisions at the same collision energy. With increasing centrality, the yield at high transverse momenta increases more rapidly than the overall particle density, leading to a strong modification of the spectral shape. This change in spectral shape is qualitatively different from observations in Au+Au collisions at the same energy. The results provide important information for discriminating between different models for the suppression of high-p_T hadrons observed in Au+Au collisions.Comment: 5 pages, 4 figures, submitted to PR

    Centrality dependence of charged antiparticle to particle ratios near mid-rapidity in d+Au collisions at sqrt(s_NN)=200 GeV

    Full text link
    The ratios of the yields of charged antiparticles to particles have been obtained for pions, kaons, and protons near mid-rapidity for d+Au collisions at sqrt(s_NN) = 200 GeV as a function of centrality. The reported values represent the ratio of the yields averaged over the rapidity range of 0.1<y_pi<1.3 and 0<y_(K,p)<0.8, where positive rapidity is in the deuteron direction, and for transverse momenta 0.1<p_(T)^(pi,K)<1.0 GeV/c and 0.3<p_(T)^(p)<1.0 GeV/c. Within the uncertainties, a lack of centrality dependence is observed in all three ratios. The data are compared to results from other systems and model calculations.Comment: 6 pages, 4 figures, submitted to PR

    Charged antiparticle to particle ratios near midrapidity in p+p collisions at sqrt(s_NN)=200 GeV

    Full text link
    The ratios of the yields of primary charged antiparticles to particles have been obtained for pions, kaons, and protons near midrapidity for p+p collisions at sqrt(s_NN) = 200 GeV. Ratios of =1.000 +/- 0.012 (stat.) +/- 0.019 (syst.), =0.93 +/- 0.05 (stat.) +/- 0.03 (syst.), and =0.85 +/- 0.04 (stat.) +/- 0.03 (syst.) have been measured. The reported values represent the ratio of the yields averaged over the rapidity range of 0.1<y_{pi}<1.3 and 0<y_{K,p}<0.8, and for transverse momenta of 0.1<p_T^{pi,K}<1.0 GeV/c and 0.3<p_T^{p}<1.0 GeV/c. Within the uncertainties, all three ratios are consistent with the values measured in d+Au collisions at the same energy. The data are compared to results from other collision systems and energies.Comment: 3 pages, 2 figures, 1 table, submitted to Phys. Rev.

    System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow

    Full text link
    This paper presents measurements of the elliptic flow of charged particles as a function of pseudorapidity and centrality from Cu-Cu collisions at 62.4 and 200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider (RHIC). The elliptic flow in Cu-Cu collisions is found to be significant even for the most central events. For comparison with the Au-Au results, it is found that the detailed way in which the collision geometry (eccentricity) is estimated is of critical importance when scaling out system-size effects. A new form of eccentricity, called the participant eccentricity, is introduced which yields a scaled elliptic flow in the Cu-Cu system that has the same relative magnitude and qualitative features as that in the Au-Au system

    Latest Results from PHOBOS

    Get PDF
    This manuscript contains a summary of the latest physics results from PHOBOS, as reported at Quark Matter 2006. Highlights include the first measurement from PHOBOS of dynamical elliptic flow fluctuations as well as an explanation of their possible origin, two-particle correlations, identified particle ratios, identified particle spectra and the latest results in global charged particle production.Comment: 9 pages, 7 figures, PHOBOS plenary proceedings for Quark Matter 200

    System size, energy, centrality and pseudorapidity dependence of charged-particle density in Au+Au and Cu+Cu collisions at RHIC

    Full text link
    Charged particle pseudorapidity distributions are presented from the PHOBOS experiment at RHIC, measured in Au+Au and Cu+Cu collisions at sqrt{s_NN}=19.6, 22.4, 62.4, 130 and 200 GeV, as a function of collision centrality. The presentation includes the recently analyzed Cu+Cu data at 22.4 GeV. The measurements were made by the same detector setup over a broad range in pseudorapidity, |eta|<5.4, allowing for a reliable systematic study of particle production as a function of energy, centrality and system size. Comparing Cu+Cu and Au+Au results, we find that the total number of produced charged particles and the overall shape (height and width) of the pseudorapidity distributions are determined by the number of nucleon participants, N_part. Detailed comparisons reveal that the matching of the shape of the Cu+Cu and Au+Au pseudorapidity distributions over the full range of eta is better for the same N_part/2A value than for the same N_part value, where A denotes the mass number. In other words, it is the geometry of the nuclear overlap zone, rather than just the number of nucleon participants that drives the detailed shape of the pseudorapidity distribution and its centrality dependence.Comment: 5 pages, 4 figures. Presented at the 20th International Conference on Nucleus-Nucleus Collisions (Quark Matter 2008), Jaipur, Rajasthan, India, 4-10 February 200

    Pseudorapidity Distributions of Charged Particles in d + Au and p + p Collisions at sNN\sqrt{s_{_{NN}}} = 200GeV

    Full text link
    The measured pseudorapidity distributions of primary charged particles are presented for d + Au and p + p collisions at sNN={\sqrt{s_{_{NN}}} =} 200 GeV over a wide pseudorapidity range of ∣η∣≤{\rm \mid \eta \mid \le} 5.4. The results for d + Au collisions are presented for minimum-bias events and as a function of collision centrality. The measurements for p + p collisions are shown for minimum-bias events. The ratio of the charged particle multiplicity in d + Au and p + A collisions relative to that for inelastic p + p collisions is found to depend only on {}, and it is remarkably independent of collision energy and system mass. The deuteron and gold fragmentation regions in d + Au collisions are in good agreement with proton nucleus data at lower energies.Comment: 4 pages, 3 figures. To appear in the proceedings of Seventeenth International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2004), Oakland, California from January 11-17, 2004. Submitted to Journal of Physics G: Nuclear and Particle Physic
    • …
    corecore