3 research outputs found

    Color and Texture Morphing with Colloids on Multilayered Surfaces

    Get PDF
    Dynamic morphing of marine species to match with environment changes in color and texture is an advanced means for surviving, self-defense, and reproduction. Here we use colloids that are placed inside a multilayered structure to demonstrate color and texture morphing. The multilayer is composed of a thermal insulating base layer, a light absorbing mid layer, and a liquid top layer. When external light of moderate intensity (∼0.2 W cm<sup>–2</sup>) strikes the structure, colloids inside the liquid layer will be assembled to locations with an optimal absorption. When this system is exposed to continuous laser pulses, more than 18 000 times of reversible responses are recorded, where the system requests 20 ms to start the response and another 160 ms to complete. The flexibility of our concept further allows the system to be built on a variety of light-absorbing substrates, including dyed paper, gold thin film, and amorphous silicon, with the top layer even a solid

    Extraordinary Shifts of the Leidenfrost Temperature from Multiscale Micro/Nanostructured Surfaces

    No full text
    In the present work, the effects of surface chemistry and micro/nanostructuring on the Leidenfrost temperature are experimentally investigated. The functional surfaces were fabricated on a 304 stainless steel surface via femtosecond laser surface processing (FLSP). The droplet lifetime experimental method was employed to determine the Leidenfrost temperature for both machine-polished and textured surfaces. A precision dropper was used to control the droplet size to 4.2 μL and surface temperatures were measured by means of an embedded thermocouple. Extraordinary shifts in the Leidenfrost temperatures, as high as 175 °C relative to the polished surface, were observed with the laser-processed surfaces. These extraordinary shifts were attributed to nanoporosity, reduction in contact angle, intermittent liquid/solid contacts, and capillary wicking actions resulting from the presence of self-assembled nanoparticles formed on the surfaces. In addition to the shift in the Leidenfrost temperature, significant enhancement of the heat transfer in the film boiling regime was also observed for the laser-processed surfaces; water droplet evaporation times were reduced by up to 33% for a surface temperature of 500 °C

    Extraordinary Shifts of the Leidenfrost Temperature from Multiscale Micro/Nanostructured Surfaces

    No full text
    In the present work, the effects of surface chemistry and micro/nanostructuring on the Leidenfrost temperature are experimentally investigated. The functional surfaces were fabricated on a 304 stainless steel surface via femtosecond laser surface processing (FLSP). The droplet lifetime experimental method was employed to determine the Leidenfrost temperature for both machine-polished and textured surfaces. A precision dropper was used to control the droplet size to 4.2 μL and surface temperatures were measured by means of an embedded thermocouple. Extraordinary shifts in the Leidenfrost temperatures, as high as 175 °C relative to the polished surface, were observed with the laser-processed surfaces. These extraordinary shifts were attributed to nanoporosity, reduction in contact angle, intermittent liquid/solid contacts, and capillary wicking actions resulting from the presence of self-assembled nanoparticles formed on the surfaces. In addition to the shift in the Leidenfrost temperature, significant enhancement of the heat transfer in the film boiling regime was also observed for the laser-processed surfaces; water droplet evaporation times were reduced by up to 33% for a surface temperature of 500 °C
    corecore