75 research outputs found

    Extreme CO Isotopic Abundances in the ULIRG IRAS 13120-5453: An Extremely Young Starburst or Top-Heavy Initial Mass Function

    Get PDF
    We present ALMA 12^{12}CO (J=1-0, 3-2 and 6-5), 13^{13}CO (J=1-0) and C18^{18}O (J=1-0) observations of the local Ultra Luminous Infrared Galaxy, IRAS 13120-5453 (dubbed "The Yo-yo"). The morphologies of the three isotopic species differ, where 13^{13}CO shows a hole in emission towards the center. We measure integrated brightness temperature line ratios of 12^{12}CO/13^{13}CO ≥\geq 60 (exceeding 200) and 13^{13}CO/C18^{18}O ≤\leq 1 in the central region. Assuming optical thin emission, C18^{18}O is more abundant than 13^{13}CO in several regions. The abundances within the central 500 pc are consistent with enrichment of the ISM via a young starburst (<<7Myr), a top-heavy initial mass function or a combination of both.Comment: 7 pages, 3 figures, accepted for publication in ApJ

    Cosmic Sands II: Challenges in Predicting and Measuring High-z Dust Temperatures

    Full text link
    In the current era of high-z galaxy discovery with JWST and ALMA, our ability to study the stellar populations and ISM conditions in a diverse range of galaxies at Cosmic Dawn has rapidly improved. At the same time, the need to understand the current limitations in modeling galaxy formation processes and physical properties in order to interpret these observations is critical. Here, we study the challenges in modeling galaxy dust temperatures, both in the context of forward modeling galaxy spectral properties from a hydrodynamical simulation and via backwards modeling galaxy physical properties from mock observations of far-infrared dust emission. We find that, especially for the most massive objects in our sample, neglecting to account for far-infrared dust optical depth can significantly bias the dust properties derived from SED modeling. Anisotropies in infrared emission, driven by the clumpy nature of early star and structure formation, leads to an orientation angle bias in quantities like infrared luminosities and apparent dust temperatures measured from galaxy SEDs. We caution that conclusions inferred from both hydrodynamical simulations and observations alike are susceptible to unique and nuanced uncertainties that can limit the usefulness of current high-z dust measurements.Comment: 17 pages, 12 figures. Submitted to ApJ. Comments welcome

    Near infrared spectroscopy of the type IIn SN 2010jl: evidence for high velocity ejecta

    Full text link
    The Type IIn supernova SN 2010jl was relatively nearby and luminous, allowing detailed studies of the near-infrared (NIR) emission. We present 1 - 2.4 micron spectroscopy over the age range of 36 - 565 days from the earliest detection of the supernova. On day 36, the H lines show an unresolved narrow emission component along with a symmetric broad component that can be modeled as the result of electron scattering by a thermal distribution of electrons. Over the next hundreds of days, the broad components of the H lines shift to the blue by 700 km/s, as is also observed in optical lines. The narrow lines do not show a shift, indicating they originate in a different region. He I 1.0830 and 2.0587 micron lines both show an asymmetric broad emission component, with a shoulder on the blue side that varies in prominence and velocity from -5500 km/s on day 108 to -4000 km/s on day 219. This component may be associated with the higher velocity flow indicated by X-ray observations of the supernova. The absence of the feature in the H lines suggests that this is from a He rich ejecta flow. The He I 1.0830 micron feature has a narrow P Cygni line, with absorption extending to ~100 km/s and strengthening over the first 200 days, and an emission component which weakens with time. At day 403, the continuum emission becomes dominated by a blackbody spectrum with a temperature of ~1900 K, suggestive of dust emission.Comment: 17 pages, 18 figure

    Global Properties of Neutral Hydrogen in Compact Groups

    Full text link
    Compact groups of galaxies provide a unique environment to study the evolution of galaxies amid frequent gravitational encounters. These nearby groups have conditions similar to those in the earlier universe when galaxies were assembled and give us the opportunity to witness hierarchical formation in progress. To understand how the compact group environment affects galaxy evolution, we examine the gas and dust in these groups. We present new single-dish GBT neutral hydrogen (HI) observations of 30 compact groups and define a new way to quantify the group HI content as the HI-to-stellar mass ratio of the group as a whole. We compare the HI content with mid-IR indicators of star formation and optical [g-r] color to search for correlations between group gas content and star formation activity of individual group members. Quiescent galaxies tend to live in HI-poor groups, and galaxies with active star formation are more commonly found in HI-rich groups. Intriguingly, we also find "rogue" galaxies whose star formation does not correlate with group HI content. In particular, we identify three galaxies (NGC 2968 in RSCG 34, KUG 1131+202A in RSCG 42, and NGC 4613 in RSCG 64) whose mid-IR activity is discrepant with the HI. We speculate that this mismatch between mid-IR activity and HI content is a consequence of strong interactions in this environment that can strip HI from galaxies and abruptly affect star-formation. Ultimately, characterizing how and on what timescales the gas is processed in compact groups will help us understand the interstellar medium in complex, dense environments similar to the earlier Universe.Comment: Accepted to A

    The Importance of Hands-on Experience with Telescopes for Students

    Full text link
    Proper interpretation and understanding of astronomical data requires good knowledge of the data acquisition process. The increase in remote observing, queue observing, and the availability of large archived data products risk insulating astronomers from the telescope, potentially reducing their familiarity with the observational techniques crucial in understanding the data. Learning fundamental observing techniques can be done in at least three ways: 1) College and university operated observing facilities, 2) Student involvement in national facilities through competitive proposals, 3) Programs at national facilities to increase upper-level undergraduate and graduate student exposure to telescopes. We encourage both national organizations and universities to include programs and funding aimed at supporting hands-on experience with telescopes through the three methods mentioned.Comment: "State of the Profession" white paper for the 2010 Astronomy and Astrophysics Decadal Surve

    ALMA [NII] 205 micron Imaging Spectroscopy of the Interacting Galaxy System BRI 1202-0725 at Redshift 4.7

    Get PDF
    We present the results from Atacama Large Millimeter/submillimeter Array (ALMA) imaging in the [NII] 205 micron fine-structure line (hereafter [NII]) and the underlying continuum of BRI 1202-0725, an interacting galaxy system at z=z = 4.7, consisting of an optical QSO, a sub-millimeter galaxy (SMG) and two Lyman-α\alpha emitters (LAEs), all within ∼\sim25 kpc of the QSO. We detect the QSO and SMG in both [NII] and continuum. At the ∼\sim1"1" (or 6.6 kpc) resolution, both QSO and SMG are resolved in [NII], with the de-convolved major axes of ∼\sim9 and ∼\sim14 kpc, respectively. In contrast, their continuum emissions are much more compact and unresolved even at an enhanced resolution of ∼\sim0.7"0.7". The ratio of the [NII] flux to the existing CO (7−-6) flux is used to constrain the dust temperature (TdustT_{\rm dust}) for a more accurate determination of the FIR luminosity LFIRL_{\rm FIR}. Our best estimated TdustT_{\rm dust} equals 43(±2)43 (\pm 2) K for both galaxies (assuming an emissivity index β=1.8\beta = 1.8). The resulting LCO(7−6)/LFIRL_{\rm CO(7-6)}/L_{\rm FIR} ratios are statistically consistent with that of local luminous infrared galaxies, confirming that LCO(7−6)L_{\rm CO(7-6)} traces the star formation (SF) rate (SFR) in these galaxies. We estimate that the on-going SF of the QSO (SMG) has a SFR of 5.1 (6.9)×103M⊙(6.9) \times 10^3 M_{\odot} yr−1^{-1} (±\pm 30%) assuming Chabrier initial mass function, takes place within a diameter (at half maximum) of 1.3 (1.5) kpc, and shall consume the existing 5 (5)×1011M⊙(5) \times 10^{11} M_{\odot} of molecular gas in 10 (7)×107(7) \times 10^7 years.Comment: 4 pages, 1 table, 4 figures; accepted for publication in the ApJ Letter

    Complex Radio Spectral Energy Distributions in Luminous and Ultraluminous Infrared Galaxies

    Get PDF
    We use the Expanded Very Large Array to image radio continuum emission from local luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) in 1 GHz windows centered at 4.7, 7.2, 29, and 36 GHz. This allows us to probe the integrated radio spectral energy distribution (SED) of the most energetic galaxies in the local universe. The 4-8 GHz flux densities agree well with previous measurements. They yield spectral indices \alpha \approx -0.67 (where F_\nu \propto \nu^\alpha) with \pm 0.15 (1\sigma) scatter, typical of nonthermal (synchrotron) emission from star-forming galaxies. The contrast of our 4-8 GHz data with literature 1.5 and 8.4 GHz flux densities gives further evidence for curvature of the radio SED of U/LIRGs. The SED appears flatter near \sim 1 GHz than near \sim 6 GHz, suggesting significant optical depth effects at the lower frequencies. The high frequency (28-37 GHz) flux densities are low compared to extrapolations from the 4-8 GHz data. We confirm and extend to higher frequency a previously observed deficit of high frequency radio emission for luminous starburst galaxies.Comment: 7 pages, 3 figures, 1 table, accepted for publication in the EVLA Special Issue of ApJ Letter
    • …
    corecore