1,220 research outputs found

    In-Situ absolute phase detection of a microwave field via incoherent fluorescence

    Full text link
    Measuring the amplitude and the absolute phase of a monochromatic microwave field at a specific point of space and time has many potential applications, including precise qubit rotations and wavelength quantum teleportation. Here we show how such a measurement can indeed be made using resonant atomic probes, via detection of incoherent fluorescence induced by a laser beam. This measurement is possible due to self-interference effects between the positive and negative frequency components of the field. In effect, the small cluster of atoms here act as a highly localized pick-up coil, and the fluorescence channel acts as a transmission line.Comment: 13 pages, 5 figure

    Suppression of error in qubit rotations due to Bloch-Siegert oscillation via the use of off-resonant Raman excitation

    Get PDF
    Abstract: The Rotation of a quantum bit (qubit) is an important step in quantum computation. The rotation is generally performed using a Rabi oscillation. In a direct two-level qubit system, if the Rabi frequency is comparable to its resonance frequency, the rotating wave approximation (RWA) is not valid, and the Rabi oscillation is accompanied by the so called Bloch-Siegert oscillation (BSO) that occurs at twice the frequency of the driving field. One implication of the BSO is that for a given interaction time and Rabi frequency, the degree of rotation experienced by the qubit depends explicitly on the initial phase of the driving field. If this effect is not controlled, it leads to an apparent fluctuation in the rotation of the qubit. Here we show that when an off-resonant lambda system is used to realize a two-level qubit, the BSO is inherently negligible, thus eliminating this source of potential error

    Perturbative calculation of quasi-normal modes of Schwarzschild black holes

    Full text link
    We discuss a systematic method of analytically calculating the asymptotic form of quasi-normal frequencies of a four-dimensional Schwarzschild black hole by expanding around the zeroth-order approximation to the wave equation proposed by Motl and Neitzke. We obtain an explicit expression for the first-order correction and arbitrary spin. Our results are in agreement with the results from WKB and numerical analyses in the case of gravitational waves.Comment: 11 pages; references added and a sign error corrected; to appear in CQ

    Mitochondrial Preconditioning: A Potential Neuroprotective Strategy

    Get PDF
    Mitochondria have long been known as the powerhouse of the cell. However, these organelles are also pivotal players in neuronal cell death. Mitochondrial dysfunction is a prominent feature of chronic brain disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD), and cerebral ischemic stroke. Data derived from morphologic, biochemical, and molecular genetic studies indicate that mitochondria constitute a convergence point for neurodegeneration. Conversely, mitochondria have also been implicated in the neuroprotective signaling processes of preconditioning. Despite the precise molecular mechanisms underlying preconditioning-induced brain tolerance are still unclear, mitochondrial reactive oxygen species generation and mitochondrial ATP-sensitive potassium channels activation have been shown to be involved in the preconditioning phenomenon. This review intends to discuss how mitochondrial malfunction contributes to the onset and progression of cerebral ischemic stroke and AD and PD, two major neurodegenerative disorders. The role of mitochondrial mechanisms involved in the preconditioning-mediated neuroprotective events will be also discussed. Mitochondrial targeted preconditioning may represent a promising therapeutic weapon to fight neurodegeneration

    Phosphorus rates on yield and quality of lettuce seeds.

    Get PDF
    Because of lack of information about phosphorus fertilization in lettuce from the standpoint of seed production, this study was undertaken. The work was carried out in Botucatu, São Paulo state, Brazil, from September 25, 2003 to February 19, 2004, in order to study the influence of crescents phosphorus rates on yield and quality of lettuce seeds, cultivar Verônica. The experimental design was randomized blocks with five treatments (0; 200; 400; 600 and 800 kg ha-1 of P2O5) and five replications. The following characteristics were evaluated: seed production per plant (g plant-1), number of seeds per plant and quality (percentage of germination and seed vigor). A linear increasing was observed on production and number of seeds per plant of lettuce with phosphorus rates, but these rates did not affect the seed physiological quality evaluated on weight of 1,000 seeds (average = 0.91 g), first count of germination (98%), standard germination test (99%), seed germination speed index (68.5), seedling emergence speed index (97.0) and emerged seedlings (49.3%)

    Coset Space Dimensional Reduction and Wilson Flux Breaking of Ten-Dimensional N=1, E(8) Gauge Theory

    Full text link
    We consider a N=1 supersymmetric E(8) gauge theory, defined in ten dimensions and we determine all four-dimensional gauge theories resulting from the generalized dimensional reduction a la Forgacs-Manton over coset spaces, followed by a subsequent application of the Wilson flux spontaneous symmetry breaking mechanism. Our investigation is constrained only by the requirements that (i) the dimensional reduction leads to the potentially phenomenologically interesting, anomaly free, four-dimensional E(6), SO(10) and SU(5) GUTs and (ii) the Wilson flux mechanism makes use only of the freely acting discrete symmetries of all possible six-dimensional coset spaces.Comment: 45 pages, 2 figures, 10 tables, uses xy.sty, longtable.sty, ltxtable.sty, (a shorter version will be published in Eur. Phys. J. C

    q-Form fields on p-branes

    Full text link
    In this paper, we give one general method for localizing any form (q-form) field on p-branes with one extra dimension, and apply it to some typical p-brane models. It is found that, for the thin and thick Minkowski branes with an infinite extra dimension, the zero mode of the q-form fields with q<(p-1)/2 can be localized on the branes. For the thick Minkowski p-branes with one finite extra dimension, the localizable q-form fields are those with q<p/2, and there are also some massive bound Kaluza-Klein modes for these q-form fields on the branes. For the same q-form field, the number of the bound Kaluza-Klein modes (but except the scalar field (q=0)) increases with the dimension of the p-branes. Moreover, on the same p-brane, the q-form fields with higher q have less number of massive bound KK modes. While for a family of pure geometrical thick p-branes with a compact extra dimension, the q-form fields with q<p/2 always have a localized zero mode. For a special pure geometrical thick p-brane, there also exist some massive bound KK modes of the q-form fields with q<p/2, whose number increases with the dimension of the p-brane.Comment: 14 pages, 2 figures, published versio
    corecore