249 research outputs found

    Keck Imaging of the Globular Cluster Systems in the Early--type Galaxies NGC 1052 and NGC 7332

    Full text link
    The presence of two globular cluster subpopulations in early-type galaxies is now the norm rather than the exception. Here we present two more examples for which the host galaxy appears to have undergone a recent merger. Using multi-colour Keck imaging of NGC 1052 and NGC 7332 we find evidence for a bimodal globular cluster colour distribution in both galaxies, with roughly equal numbers of blue and red globular clusters. The blue ones have similar colours to those in the Milky Way halo and are thus probably very old and metal-poor. If the red GC subpopulations are at least solar metallicity, then stellar population models indicate young ages. We discuss the origin of globular clusters within the framework of formation models. We conclude that recent merger events in these two galaxies have had little effect on their overall GC systems. We also derive globular cluster density profiles, global specific frequencies and in the case of NGC 1052, radial colour gradients and azimuthal distribution. In general these globular cluster properties are normal for early-type galaxies.Comment: 11 pages, Latex, 15 figures, 2 tables, accepted by MNRA

    XMM and Chandra measurements of the AGN intrinsic absorption: dependence on luminosity and redshift

    Full text link
    We combine bright XMM data with the Chandra Deep Field South observations in order to explore the behavior of the intrinsic AGN absorption, as a function of redshift and luminosity.Our sample consists of 359 sources selected in the hard 2-8 keV band, spanning the flux range 6\times10^{-16}-$3\times10^{-13} erg s^-1 cm^-2 with a high rate of spectroscopic or photometric redshift completeness (100 and 85 per cent respectively for the Chandra and XMM data. We derive the column density values using X-ray spectral fits. We find that the fraction of obscured AGN falls with increasing luminosity in agreement with previous findings. The fraction of obscured AGN shows an apparent increase at high redshifts (z>2). Simulations show that this effect can be most probably attributed to the fact that at high redshifts the column densities are overestimated.Comment: 14 pages, 9 figures, A&A accepte

    The XMM-Newton Needles in the Haystack Survey: the local X-ray luminosity function of 'normal' galaxies

    Full text link
    In this paper we estimate the local (z<0.22) X-ray luminosity function of `normal' galaxies derived from the XMM-Newton Needles in the Haystack Survey. This is an on-going project that aims to identify X-ray selected `normal' galaxies (i.e. non-AGN dominated) in the local Universe. We are using a total of 70 XMM-Newton fields covering an area of 11 sq. degrees which overlap with the Sloan Digital Sky Survey Data Release-2. `Normal' galaxies are selected on the basis of their resolved optical light profile, their low X-ray--to--optical flux ratio (log(f_x/f_o)<-2) and soft X-ray colours. We find a total of 28 candidate `normal' galaxies to the 0.5-8 keV band flux limit of ~2x10^{-15} cgs. Optical spectra are available for most sources in our sample (82 per cent). These provide additional evidence that our sources are bona-fide 'normal' galaxies with X-ray emission coming from diffuse hot gas emission and/or X-ray binaries rather than a supermassive black hole. Sixteen of our galaxies have narrow emission lines or a late-type Spectral Energy Distribution (SED) while the remaining 12 present only absorption lines or an early-type SED. Combining our XMM-Newton sample with 18 local (z<0.22) galaxies from the Chandra Deep Field North and South surveys, we construct the local X-ray luminosity function of `normal' galaxies. This can be represented with a Schechter form with a break at L* ~ 3x10^{41} cgs and a slope of ~1.78+/-0.12. Using this luminosity function and assuming pure luminosity evolution of the form (1+z)^{3.3} we estimate a contribution to the X-ray background from `normal' galaxies of 10-20 per cent (0.5-8 keV). Finally, we derive, for the first time, the luminosity functions for early and late type systems separately.Comment: To appear to MNRAS, 9 page

    Radio observations of the CDF-South: a possible link between radio emission and star formation in X-ray selected AGN

    Full text link
    We explore the nature of the radio emission of X-ray selected AGN by combining deep radio (1.4GHz; 60micro-Jy) and X-ray data with multiwavelength (optical, mid-infrared) observations in the Extended Chandra Deep Field South (E-CDFS). The fraction of radio detected X-ray sources increases from 9% in the E-CDFS to 14% in the central region of this field, which has deeper X-ray coverage from the 1Ms CDFS. We find evidence that the radio emission of up to 60% of the hard X-ray/radio matched AGN is likely associated with star-formation in the host galaxy. Firstly, the mid-IR (24micron) properties of these sources are consistent with the infrared/radio correlation of starbursts. Secondly, most of them are found in galaxies with blue rest-frame optical colours (U-V), suggesting a young stellar population. On the contrary, X-ray/radio matched AGN which are not detected in the mid-infrared have red U-V colours suggesting their radio emission is associated with AGN activity. We also find no evidence for a population of heavily obscured radio-selected AGN that are not detected in X-rays. Finally, we do no confirm previous claims for a correlation between radio emission and X-ray obscuration. Assuming that the radio continuum measures star-formation, this finding is against models where the dust and gas clouds associated with circumnuclear starbursts are spherically blocking our view to the central engine.Comment: Accepted by A&

    On the use of photometric redshifts for X-ray selected AGNs

    Full text link
    (Abridged) In this paper we present photometric redshift estimates for a sample of X-ray selected sources detected in the wide field (~2 deg^2), bright [f_{X} (0.5-8 keV)~10^{-14} cgs] XMM-Newton/2dF survey. Unlike deeper X-ray samples comprising a large fraction of sources with colours dominated by the host galaxy, our bright survey primarily probes the QSO X-ray population. Therefore photometric redshift methods employing both galaxy and QSO templates need to be used. We employ the photometric redshift technique of Hatziminaoglou, Mathez & Pello (2000) using 5-band photometry from the SDSS. We separate our X-ray sources according to their optical profile to point-like and extended. We apply QSO and galaxy templates to the point-like and extended sources respectively. X-ray sources associated with Galactic stars are identified and discarded from our point-like sample on the basis of their low X-ray--to--optical flux ratio and their broad band colours that are best fit by stellar templates. Comparison of our results with spectroscopic redshifts available, allows calibration of our method and estimation of the photometric redshift accuracy. For ~70 per cent of the point-like sources photometric redshifts are correct within dz <= 0.3 (or ~75 per cent have dz/(1+z) <= 0.2), and the rms scatter is estimated to be sigma_z = 0.30. For the optically extended objects the photometric redshifts work only in the case of red (g - r > 0.5 mag) sources yielding dz <= 0.15 and dz/(1+z) <= 0.2 for 73 and 93 per cent respectively. However, we find that the above photometric redshift technique does not work in the case of extended sources with blue colours (g - r < 0.5): such sources cannot be fit successfully by QSO or galaxy templates, or any linear combination of the two.Comment: Replaced due to extended revision; 11 pages, 4 figures; Accepted in A&

    The Phoenix Deep Survey: X-ray properties of faint radio sources

    Full text link
    In this paper we use a 50ks XMM-Newton pointing overlapping with the Phoenix Deep Survey, a homogeneous radio survey reaching muJy sensitivities, to explore the X-ray properties and the evolution of star-forming galaxies. UV, optical and NIR photometry is available and is used to estimate photometric redshifts and spectral types for radio sources brighter than R=21.5mag (total of 82). Sources with R<21.5mag and spiral galaxy SEDs (34) are grouped into two redshift bins with a median of z=0.240 and 0.455 respectively. Stacking analysis for both the 0.5-2 and 2-8keV bands is performed on these subsamples. A high confidence level signal (>3.5sigma) is detected in the 0.5-2keV band corresponding to a mean flux of ~3e-16cgs for both subsamples. This flux translates to mean luminosities of ~5e40 and 1.5e41cgs for the z=0.240 and 0.455 subsamples respectively. Only a marginally significant signal (2.6sigma) is detected in the 2-8keV band for the z=0.455 subsample. We argue that the stacked signal above is dominated by star-formation. The mean L_X/L_B ratio and the mean L_X of the two subsamples are found to be higher than optically selected spirals and similar to starbursts. We also find that the mean L_X and L_1.4 of the faint radio sources studied here are consistent with the L_X-L_1.4 correlation of local star-forming galaxies. Moreover, the X-ray emissivity of sub-mJy sources to z~0.3 is found to be elevated compared to local HII galaxies. The observed increase is consistent with L_X evolution of the form (1+z)^3. Assuming that our sample is indeed dominated by starbursts this is direct evidence for evolution of such systems at X-ray wavelengths. Using an empirical L_X to SFR conversion we estimate a global SFR density at z~0.3 of \~0.029M_o/yr/Mpc in agreement with previous studies.Comment: 12 pages, 6 figures, accepted for publication in MNRA

    The Phoenix Deep Survey: spectroscopic catalog

    Full text link
    The Phoenix Deep Survey is a multi-wavelength survey based on deep 1.4 GHz radio imaging, reaching well into the sub-100 microJy level. One of the aims of this survey is to characterize the sub-mJy radio population, exploring its nature and evolution. In this paper we present the catalog and results of the spectroscopic observations aimed at characterizing the optically ``bright'' (R<~ 21.5 mag) counterparts of faint radio sources. Out of 371 sources with redshift determination, 21% have absorption lines only, 11% show AGN signatures, 32% are star-forming galaxies, 34% show narrow emission lines that do not allow detailed spectral classification (due to poor signal-to-noise ratio and/or lack of diagnostic emission lines) and the remaining 2% are identified with stars. For the star-forming galaxies with a Balmer decrement measurement we find a median extinction of A(Ha)=1.9 mag, higher than that of optically selected samples. This is a result of the radio selection, which is not biased against dusty systems. Using the available spectroscopic information, we estimate the radio luminosity function of star-forming galaxies in two independent redshift bins at z~0.1 and 0.3 respectively. We find direct evidence for strong luminosity evolution of these systems consistent with L(1.4 GHz) ~ (1+z)^(2.7).Comment: 39 pages, 12 figures. References added, and minor changes to reflect published versio
    • …
    corecore