3,035 research outputs found

    Unparticle constraints from SN1987A

    Full text link
    The existence of an unparticle sector, weakly coupled to the standard model, would have a profound impact on supernova (SN) physics. Emission of energy into the unparticle sector from the core of SN1987A would have significantly shortened the observed neutrino burst. The unparticle interaction with nucleons, neutrinos, electrons and muons is constrained to be so weak that it is unlikely to provide any missing-energy signature at colliders. One important exception are models where scale invariance in the hidden sector is broken by the Higgs vacuum expectation value. In this case the SN emission is suppressed by threshold effects.Comment: 4 pages, 1 figur

    Axion hot dark matter bounds after Planck

    Full text link
    We use cosmological observations in the post-Planck era to derive limits on thermally produced cosmological axions. In the early universe such axions contribute to the radiation density and later to the hot dark matter fraction. We find an upper limit m_a < 0.67 eV at 95% C.L. after marginalising over the unknown neutrino masses, using CMB temperature and polarisation data from Planck and WMAP respectively, the halo matter power spectrum extracted from SDSS-DR7, and the local Hubble expansion rate H_0 released by the Carnegie Hubble Program based on a recalibration of the Hubble Space Telescope Key Project sample. Leaving out the local H_0 measurement relaxes the limit somewhat to 0.86 eV, while Planck+WMAP alone constrain the axion mass to 1.01 eV, the first time an upper limit on m_a has been obtained from CMB data alone. Our axion limit is therefore not very sensitive to the tension between the Planck-inferred H_0 and the locally measured value. This is in contrast with the upper limit on the neutrino mass sum, which we find here to range from 0.27 eV at 95% C.L. combining all of the aforementioned observations, to 0.84 eV from CMB data alone.Comment: 20 pages, 8 figures, matches version published in JCAP 1310 (2013) 02

    Cosmological axion bounds

    Full text link
    We discuss current cosmological constraints on axions, as well as future sensitivities. Bounds on axion hot dark matter are discussed first, and subsequently we discuss both current and future sensitivity to models in which axions play the role as cold dark matter, but where the Peccei-Quinn symmetry is not restored during reheating.Comment: 4 pages, 2 figures, To appear in the proceedings of 5th Patras Workshop on Axions, WIMPs and WISPs, Durham 13-17 July 200

    Cosmology seeking friendship with sterile neutrinos

    Full text link
    Precision cosmology and big-bang nucleosynthesis mildly favor extra radiation in the universe beyond photons and ordinary neutrinos, lending support to the existence of low-mass sterile neutrinos. We use the WMAP 7-year data, small-scale CMB observations from ACBAR, BICEP and QuAD, the SDSS 7th data release, and measurement of the Hubble parameter from HST observations to derive credible regions for the assumed common mass scale m_s and effective number N_s of thermally excited sterile neutrino states. Our results are compatible with the existence of one or perhaps two sterile neutrinos, as suggested by LSND and MiniBooNE, if m_s is in the sub-eV range.Comment: 4 pages, 1 figure, matches version published in PR

    Future cosmological sensitivity for hot dark matter axions

    Full text link
    We study the potential of a future, large-volume photometric survey to constrain the axion mass mam_a in the hot dark matter limit. Future surveys such as Euclid will have significantly more constraining power than current observations for hot dark matter. Nonetheless, the lowest accessible axion masses are limited by the fact that axions lighter than 0.15\sim 0.15 eV decouple before the QCD epoch, assumed here to occur at a temperature TQCD170T_{\rm QCD} \sim 170 MeV; this leaves an axion population of such low density that its late-time cosmological impact is negligible. For larger axion masses, ma0.15m_a \gtrsim 0.15 eV, where axions remain in equilibrium until after the QCD phase transition, we find that a Euclid-like survey combined with Planck CMB data can detect mam_a at very high significance. Our conclusions are robust against assumptions about prior knowledge of the neutrino mass. Given that the proposed IAXO solar axion search is sensitive to ma0.2m_a\lesssim 0.2 eV, the axion mass range probed by cosmology is nicely complementary.Comment: 17 pages, 5 figure

    On the Validity of the 0-1 Test for Chaos

    Full text link
    In this paper, we present a theoretical justification of the 0-1 test for chaos. In particular, we show that with probability one, the test yields 0 for periodic and quasiperiodic dynamics, and 1 for sufficiently chaotic dynamics

    Collective dynamics in optomechanical arrays

    Full text link
    The emerging field of optomechanics seeks to explore the interaction between nanomechanics and light. Recently, the exciting concept of optomechanical crystals has been introduced, where defects in photonic crystal structures are used to generate both localized optical and mechanical modes that interact with each other. Here we start exploring the collective dynamics of arrays consisting of many coupled optomechanical cells. We show that such "optomechanical arrays" can display synchronization and that they can be described by a modified Kuramoto model that allows to explain and predict most of the features that will be observable in future experiments.Comment: 6 pages, 5 figure

    Coherent Beam-Beam Tune Shift of Unsymmetrical Beam-Beam Interactions with Large Beam-Beam Parameter

    Full text link
    Coherent beam-beam tune shift of unsymmetrical beam-beam interactions was studied experimentally and numerically in HERA where the lepton beam has a very large beam-beam parameter (up to ξy=0.272\xi_y=0.272). Unlike the symmetrical case of beam-beam interactions, the ratio of the coherent and incoherent beam-beam tune shift in this unsymmetrical case of beam-beam interactions was found to decrease monotonically with increase of the beam-beam parameter. The results of self-consistent beam-beam simulation, the linearized Vlasov equation, and the rigid-beam model were compared with the experimental measurement. It was found that the coherent beam-beam tune shifts measured in the experiment and calculated in the simulation agree remarkably well but they are much smaller than those calculated by the linearized Vlasov equation with the single-mode approximation or the rigid-beam model. The study indicated that the single-mode approximation in the linearization of Vlasov equation is not valid in the case of unsymmetrical beam-beam interactions. The rigid-beam model is valid only with a small beam-beam parameter in the case of unsymmetrical beam-beam interactions.Comment: 32 pages, 13 figure

    Reactive oxygen and nitrogen species in sepsis-induced hepatic microvascular dysfunction

    Get PDF
    OBJECTIVE AND DESIGN: Hepatic microvascular dysfunction is a critical event in the development of liver failure during sepsis. Activated blood cells and reactive oxygen and nitrogen species (RONS) have been implicated in the pathogenesis of sepsis. METHODS: Intravital-videomicroscopy was used to determine whether RONS contribute to the recruitment of leukocytes/platelets in the hepatic microvasculature during sepsis. Six hours following cecal-ligation and puncture (CLP), disturbances of the hepatic microvasculature were assessed in WT-mice (C57Bl/6 J; n = 8), in mice lacking gp91(phox)(n = 5), overexpressing superoxide-dismutase (SOD, n = 8), in WT-mice treated with a NOS-inhibitor (l-NAME, n = 5), lacking nNOS, eNOS or iNOS (n = 5 each), treated with the NO-donor DetaNO (n = 5), in WT-mice treated with gadolinium-chloride (GdCl(2), n = 5) and compared to a group of WT-mice following a sham operation (n = 8). Six hours post-CLP, the adhesion of leukocytes and platelets in terminal hepatic venules (THV) and sinusoids was quantified. RESULTS: In WT-mice, CLP elicited increases in the number of adherent leukocytes and platelets. Similar responses to CLP were noted in mice overexpressing SOD or lacking either eNOS or gp91(phox). The blood-cell recruitment was significantly blunted in septic iNOS-knockout mice and this response was reversed by pre-treatment with DetaNO. CONCLUSION: These findings suggest that iNOS-derived NO is a determinant of the pro-inflammatory phenotype assumed by the hepatic microvasculature during sepsis
    corecore