14 research outputs found

    Mg-Ca0.3 Electrochemical Activity Exposed to Hank’s Physiological Solution and Properties of Ag-Nano-Particles Deposits

    Get PDF
    This work compares the degradation of Mg and Mg-Ca0.3 alloy when they are exposed for 14 days to Hank’s solution at 37 °C. A combination of immersion test, electrochemical techniques (PDP, EIS, EN), and surface characterization methods (SEM-EDS, XRD, and XPS) were carried out. The pH change over time, the lower mass loss (≈20%), and the lower concentration of the released Mg2+ ions (≈3.6 times), as well as the lower level of the surface degradation, allowed to consider the positive effect of Ca, presenting Mg-Ca0.3 alloy with lower electrochemical activity than that of Mg. The positive effect of Ca may be due to the formed layer characteristics on the alloy surface, which impedes the cathodic hydrogen evolution and Mg-ions release. The electroless deposited Ag-nano-particles (Ag-NPs) on Mg-Ca0.3 surface were characterized by SEM-EDS, XRD, UV-Vis, and contact angle. The agar-diffusion test was used to compare the growth of Staphylococcus aureus and Escherichia coli bacteria on Mg-Ca0.3 in the presence of Ag-NPs deposits in different size. Zeta-potential of the bacteria was negative, with respect to pH of the Mueller-Hinton culture broth. The greater antibacterial effect of S. aureus was attributed to its more negative zeta-potential, attracting more released Ag+ ions

    Mg-ca0.3 electrochemical activity exposed to hank’s physiological solution and properties of ag-nano-particles deposits

    No full text
    This work compares the degradation of Mg and Mg-Ca0.3 alloy when they are exposed for 14 days to Hank’s solution at 37 °C. A combination of immersion test, electrochemical techniques (PDP, EIS, EN), and surface characterization methods (SEM-EDS, XRD, and XPS) were carried out. The pH change over time, the lower mass loss (≈20%), and the lower concentration of the released Mg ions (≈3.6 times), as well as the lower level of the surface degradation, allowed to consider the positive effect of Ca, presenting Mg-Ca0.3 alloy with lower electrochemical activity than that of Mg. The positive effect of Ca may be due to the formed layer characteristics on the alloy surface, which impedes the cathodic hydrogen evolution and Mg-ions release. The electroless deposited Ag-nano-particles (Ag-NPs) on Mg-Ca0.3 surface were characterized by SEM-EDS, XRD, UV-Vis, and contact angle. The agar-diffusion test was used to compare the growth of Staphylococcus aureus and Escherichia coli bacteria on Mg-Ca0.3 in the presence of Ag-NPs deposits in different size. Zeta-potential of the bacteria was negative, with respect to pH of the Mueller-Hinton culture broth. The greater antibacterial effect of S. aureus was attributed to its more negative zeta-potential, attracting more released Ag ions.J. Luis González-Murguía acknowledges the Mexican National Council for Science and Technology (CONACYT) for the scholarship granted to him for his Ph.D. study. The authors gratefully thank the National Laboratory of Nano- and Biomaterials (LANNBIO-CINVESTAV) for allowing the use of DRX, SEM-EDS and XPS facilities, and to Daniel Aguilar, Victor Rejón Moo and Willian Cauich for their support in data acquisition. The projects: FOMIX-Yucatán 2008-108160, CONACYT LAB-2009-01-123913, 292692, 294643, 188345 y 204822

    Dehydration Process of Hofmann-Type Layered Solids

    No full text
    In the present work the dehydration process of layered solids with formula unit M(H2O)2[Ni(CN)4]·nH2O, M = Ni, Co, Mn; n = 1, 2, 4 is studied using modulated thermogravimetry. The results show that water molecules need to overcome an energetic barrier (activation energy between 63 and 500 kJ/mol) in order to diffuse through the interlayer region. The related kinetic parameters show a dependence on the water partial pressure. On the other hand, X-ray diffraction results provide evidence that the dehydration process is accompanied by framework collapse, limiting the structural reversibility, except for heating below 80 °C where the ordered structure remains. Removal of water molecules from the interlayer region disrupts the long-range structural order of the solid

    Comparing the Efficiency of N-Doped TiO<sub>2</sub> and N-Doped Bi<sub>2</sub>MoO<sub>6</sub> Photo Catalysts for MB and Lignin Photodegradation

    No full text
    In this study, we tested the efficiency of nitrogen-doped titanium dioxide (N-TiO2) and nitrogen-doped bismuth molybdate (N-Bi2MoO6) compounds as photocatalysts capable of degrading methylene blue and lignin molecules under irradiation with ultraviolet (UV) and visible light (VIS). Moreover, we compared TiO2 and Bi2MoO6 catalysts with N-TiO2 and N-Bi2MoO6 compounds using chemical coprecipitation. The catalysts were prepared starting from Ti(OCH2CH2CH3)4, Bi(NO3)3&#183;5H2O, and (NH4)6Mo7O24 reagents. N-doping was achieved in a continuous reflux system, using ethylene diamine as a nitrogen source. The resulting materials were characterized using Scanning Electron Microscopy (SEM), X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Additionally, we observed the decrease in particle size after processing the compounds in the reflux system. The results regarding photocatalytic degradation tests show a remarkable effect for nitrogen doped samples, achieving 90% of lignin degradation

    Synergistic Correlation in the Colloidal Properties of TiO<sub>2</sub> Nanoparticles and Its Impact on the Photocatalytic Activity

    No full text
    In this work, the relationship between the photodegradation rate of methylene blue (MB) and the effective surface charge of titania nanoparticles (TiO2 NPs) in an aqueous solution is addressed. Colloidal dispersions were prepared from TiO2 NPs (4–10 nm) for the heterogenous photocatalysis test. The dispersion properties such as pH, hydrodynamic diameter, zeta potential, and isoelectric point were studied. Acidic TiO2 dispersions (pH = 3.6–4.0) with a positive zeta potential and smaller hydrodynamic diameter exhibit larger colloidal stability and pseudo-first-order kinetics for the degradation of MB. The largest rate constant (5 × 10−2 min−1) corresponded to a conversion of 98% within 75 min under UV light. This enhanced rate is a synergic effect between the surface area, charge, and optimal hydrodynamic diameter of TiO2 NPs. A linear correlation between the calculated values for the absorption cross-section and normalized rate constant was found for the systems under study. It was observed that an eventual increase in the pH (4–5.5) reduces the effective surface charge and dispersion stability, causing a decrease in the rate constants of one order of magnitude (10−3 min−1) for TiO2 agglomerates with a larger hydrodynamic diameter (300–850 nm)

    Synergistic Correlation in the Colloidal Properties of TiO2 Nanoparticles and Its Impact on the Photocatalytic Activity

    No full text
    In this work, the relationship between the photodegradation rate of methylene blue (MB) and the effective surface charge of titania nanoparticles (TiO2 NPs) in an aqueous solution is addressed. Colloidal dispersions were prepared from TiO2 NPs (4&ndash;10 nm) for the heterogenous photocatalysis test. The dispersion properties such as pH, hydrodynamic diameter, zeta potential, and isoelectric point were studied. Acidic TiO2 dispersions (pH = 3.6&ndash;4.0) with a positive zeta potential and smaller hydrodynamic diameter exhibit larger colloidal stability and pseudo-first-order kinetics for the degradation of MB. The largest rate constant (5 &times; 10&minus;2 min&minus;1) corresponded to a conversion of 98% within 75 min under UV light. This enhanced rate is a synergic effect between the surface area, charge, and optimal hydrodynamic diameter of TiO2 NPs. A linear correlation between the calculated values for the absorption cross-section and normalized rate constant was found for the systems under study. It was observed that an eventual increase in the pH (4&ndash;5.5) reduces the effective surface charge and dispersion stability, causing a decrease in the rate constants of one order of magnitude (10&minus;3 min&minus;1) for TiO2 agglomerates with a larger hydrodynamic diameter (300&ndash;850 nm)

    Tailoring Heat Transfer and Bactericidal Response in Multifunctional Cotton Composites

    No full text
    Through the execution of scientific innovations, &ldquo;smart materials&rdquo; are shaping the future of technology by interacting and responding to changes in our environment. To make this a successful reality, proper component selection, synthesis procedures, and functional active agents must converge in practical and resource-efficient procedures to lay the foundations for a profitable and sustainable industry. Here we show how the reaction time, temperature, and surface stabilizer concentration impact the most promising functional properties in a cotton-based fabric coated with silver nanoparticles (AgNPs@cotton), i.e., the thermal and bactericidal response. The coating quality was characterized and linked to the selected synthesis parameters and correlated by a parallel description of &ldquo;proof of concept&rdquo; experiments for the differential heat transfer (conversion and dissipation properties) and the bactericidal response tested against reference bacteria and natural bacterial populations (from a beach, cenote, and swamp of the Yucatan Peninsula). The quantification of functional responses allowed us to establish the relationship between (i) the size and shape of the AgNPs, (ii) the collective response of their agglomerates, and (iii) the thermal barrier role of a surface modifier as PVP. The procedures and evaluations in this work enable a spectrum of synthesis coordinates that facilitate the formulation of application-modulated fabrics, with grounded examples reflected in &ldquo;smart packaging&rdquo;, &ldquo;smart clothing&rdquo;, and &ldquo;smart dressing&rdquo;

    Tailoring Heat Transfer and Bactericidal Response in Multifunctional Cotton Composites

    No full text
    Through the execution of scientific innovations, “smart materials” are shaping the future of technology by interacting and responding to changes in our environment. To make this a successful reality, proper component selection, synthesis procedures, and functional active agents must converge in practical and resource-efficient procedures to lay the foundations for a profitable and sustainable industry. Here we show how the reaction time, temperature, and surface stabilizer concentration impact the most promising functional properties in a cotton-based fabric coated with silver nanoparticles (AgNPs@cotton), i.e., the thermal and bactericidal response. The coating quality was characterized and linked to the selected synthesis parameters and correlated by a parallel description of “proof of concept” experiments for the differential heat transfer (conversion and dissipation properties) and the bactericidal response tested against reference bacteria and natural bacterial populations (from a beach, cenote, and swamp of the Yucatan Peninsula). The quantification of functional responses allowed us to establish the relationship between (i) the size and shape of the AgNPs, (ii) the collective response of their agglomerates, and (iii) the thermal barrier role of a surface modifier as PVP. The procedures and evaluations in this work enable a spectrum of synthesis coordinates that facilitate the formulation of application-modulated fabrics, with grounded examples reflected in “smart packaging”, “smart clothing”, and “smart dressing”
    corecore