177 research outputs found

    Fungi, rocks, and minerals

    Get PDF

    The roles of endolithic fungi in bioerosion and disease in marine ecosystems. I. General concepts

    Get PDF
    Endolithic true fungi and fungus-like microorganisms penetrate calcareous substrates formed by living organisms, cause significant bioerosion and are involved in diseases of many host animals in marine ecosystems. A theoretical interactive model for the ecology of reef-building corals is proposed in this review. This model includes five principle partners that exist in a dynamic equilibrium: polyps of a colonial coelenterate, endosymbiotic zooxanthellae, endolithic algae (that penetrate coral skeletons), endolithic fungi (that attack the endolithic algae, the zooxanthellae and the polyps) and prokaryotic and eukaryotic microorganisms (which live in the coral mucus). Endolithic fungi and fungus-like boring microorganisms are important components of the marine calcium carbonate cycle because they actively contribute to the biodegradation of shells of animals composed of calcium carbonate and calcareous geological substrates

    Проблема здоровьесбережения детей в современной России

    Full text link
    Pretreatment of mixed softwoods with SO2 impregnation and steam for production of ethanol has been investigated. The optimal conditions, both for sugar yield and ethanol yield, to assess the effect of inhibitors formed in the pretreatment, have been determined. The parameters investigated were: SO2 concentration (1-6% (w/w) dry matter), temperature (190-230 degrees C) and residence time (2-15 min). After pretreatment, the material was separated into a solid residue and a filtrate. The solid residue was enzymatically hydrolysed with 2% dry matter (w/w). To investigate fermentability, the hydrolysed filtrate was fermented using Saccharomyces cerevisiae. The effects of the different parameters are described by response-surface modelling. The highest experimental sugar yield of 42.1 g per 100 g dry matter was obtained at 210 degrees C and 5.5 min residence time. Although the fermentabilities were good for all filtrates with yields greater than 90% of the yield obtained in a pure glucose reference solution, the pretreatment has a clear influence on the ethanol production rate. (C) 1998 SCI

    Biotransformation of lanthanum by Aspergillus niger

    Get PDF
    Lanthanum is an important rare earth element and has many applications in modern electronics and catalyst manufacturing. However, there exist several obstacles in the recovery and cycling of this element due to a low average grade in exploitable deposits and low recovery rates by energy-intensive extraction procedures. In this work, a novel method to transform and recover La has been proposed using the geoactive properties of Aspergillus niger. La-containing crystals were formed and collected after A. niger was grown on Czapek-Dox agar medium amended with LaCl 3. Energy-dispersive X-ray analysis (EDXA) showed the crystals contained C, O, and La; scanning electron microscopy revealed that the crystals were of a tabular structure with terraced surfaces. X-ray diffraction identified the mineral phase of the sample as La 2(C 2O 4) 3·10H 2O. Thermogravimetric analysis transformed the oxalate crystals into La 2O 3 with the kinetics of thermal decomposition corresponding well with theoretical calculations. Geochemical modelling further confirmed that the crystals were lanthanum decahydrate and identified optimal conditions for their precipitation. To quantify crystal production, biomass-free fungal culture supernatants were used to precipitate La. The results showed that the precipitated lanthanum decahydrate achieved optimal yields when the concentration of La was above 15 mM and that 100% La was removed from the system at 5 mM La. Our findings provide a new aspect in the biotransformation and biorecovery of rare earth elements from solution using biomass-free fungal culture systems. </p

    Metabolic synergies in the biotransformation of organic and metallic toxic compounds by a saprotrophic soil fungus

    Get PDF
    The saprotrophic fungus Penicillium griseofulvum was chosen as model organism to study responses to a mixture of hexachlorocyclohexane (HCH) isomers (α-HCH, β-HCH, γ-HCH, δ-HCH) and of potentially toxic metals (vanadium, lead) in solid and liquid media. The P. griseofulvum FBL 500 strain was isolated from polluted soil containing high concentrations of HCH isomers and potentially toxic elements (Pb, V). Experiments were performed in order to analyse the tolerance/resistance of this fungus to xenobiotics, and to shed further light on fungal potential in inorganic and organic biotransformations. The aim was to examine the ecological and bioremedial potential of this fungus verifying the presence of mechanisms that allow it to transform HCH isomers and metals under different, extreme, test conditions. To our knowledge, this work is the first to provide evidence on the biotransformation of HCH mixtures, in combination with toxic metals, by a saprotrophic non-white-rot fungus and on the metabolic synergies involved
    corecore