23 research outputs found

    Chlortetracycline and Demeclocycline Inhibit Calpains and Protect Mouse Neurons against Glutamate Toxicity and Cerebral Ischemia

    Get PDF
    Minocycline is a potent neuroprotective tetracycline in animal models of cerebral ischemia. We examined the protective properties of chlortetracycline (CTC) and demeclocycline (DMC) and showed that these two tetracyclines were also potent neuroprotective against glutamate-induced neuronal death in vitro and cerebral ischemia in vivo. However, CTC and DMC appeared to confer neuroprotection through a unique mechanism compared with minocycline. Rather than inhibiting microglial activation and caspase, CTC and DMC suppressed calpain activities. In addition, CTC and DMC only weakly antagonized N-methyl-D-aspartate (NMDA) receptor activities causing 16 and 14%, respectively, inhibition of NMDA-induced whole cell currents and partially blocked NMDA-induced Ca2+ influx, commonly regarded as the major trigger of neuronal death. In vitro and in vivo experiments demonstrated that the two compounds selectively inhibited the activities of calpain I and II activated following glutamate treatment and cerebral ischemia. In contrast, minocycline did not significantly inhibit calpain activity. Taken together, these results suggested that CTC and DMC provide neuroprotection through suppression of a rise in intracellular Ca2+ and inhibition of calpains

    A mechanobiological investigation of platelets

    No full text
    Understanding mechanotransduction pathways leading to thrombosis will require progressive steps, including determination of the mechanical behavior of the platelet membrane in response to applied loads. The platelet membrane deformation capacity, as quantified by membrane progression into a borosilicate glass micropipette of defined internal diameter, was probed in murine platelets using a controlled range of negative pressure (0\u20137cmH2O). Based on our observations that the platelet portion outside the micropipette was mostly spherical and that the platelet volume did not change upon aspiration, a novel continuum mechanics-based model of the platelet micropipette aspiration experiment was created, and a new hyperelastic isotropic material model including membrane residual tension was proposed for the platelet membrane. Murine platelet membranes maintained an average linear deformation behavior: Lp/Rp = 146,100pi 7 Rp + 19.923, where Lp is the platelet length aspirated in the micropipette (m), Rp is micropipette radius (m) and pi is the aspiration pressure (Pa). The theoretical model was used to generate material constants for the murine platelet membrane that allowed for an accurate simulation of the micropipette aspiration experiments. From published results, another set of material constants was established for the human platelet membrane. Limited cases of platelet lysis upon aspiration were analyzed using the theoretical model to determine preliminary membrane tension strength values.Peer reviewed: YesNRC publication: Ye

    Protection by cholesterol-extracting cyclodextrins: a role for N-methyl-D-aspartate receptor redistribution

    No full text
    Cyclodextrins (CDs) are cyclic oligosaccharides composed of a lipophilic central cavity and a hydrophilic outer surface. Some CDs are capable of extracting cholesterol from cell membranes and can affect function of receptors and proteins localized in cholesterol-rich membrane domains. In this report, we demonstrate the neuroprotective activity of some CD derivatives against oxygen-glucose deprivation (OGD), N-methyl-D-aspartic acid (NMDA) and glutamate in cortical neuronal cultures. Although all CDs complexed with NMDA or glutamate, only beta-, methylated beta- and sulfated beta-CDs displayed neuroprotective activity and lowered cellular cholesterol. Only CDs that lowered cholesterol levels redistributed the NMDA receptor NR2B subunit, PSD-95 (postsynaptic density protein 95 kDa) and neuronal nitric oxide synthase (nNOS) from Triton X-100 insoluble membrane domains to soluble fractions. Cholesterol repletion counteracted the ability of methylated beta-CD to protect against NMDA toxicity, and reversed NR2B, PSD-95 and nNOS localization to Triton X-100 insoluble membrane fraction. Surprisingly, neuroprotective CDs had minimal effect on NMDA receptor-mediated increases in intracellular Ca(2+) concentration ([Ca(2+)](i)), but did suppress OGD-induced increases in [Ca(2+)](i). beta-CD, but not Mbeta-CD, also caused a slight block of NMDA-induced currents, suggesting a minor contribution to neuroprotection by direct action on NMDA receptors. Taken together, data suggest that cholesterol extraction from detergent-resistant microdomains affects NMDA receptor subunit distribution and signal propagation, resulting in neuroprotection of cortical neuronal cultures against ischemic and excitotoxic insults. Since cholesterol-rich membrane domains exist in neuronal postsynaptic densities, these results imply that synaptic NMDA receptor subpopulations underlie excitotoxicity, which can be targeted by CDs without affecting overall neuronal Ca(2+) levelsNRC publication: Ye

    Protection of cortical neurons against oxygen-glucose deprivation and N-methyl-D-aspartate by DIDS and SITS

    No full text
    The Cl(-) channel blockers, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) or 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS) dose-dependently protected against oxygen-glucose deprivation in cultured rat cortical neurons. DIDS or SITS attenuated oxygen-glucose deprivation-induced increases in extracellular glutamate concentrations and intracellular Ca(2+). DIDS or SITS provided moderate protection against N-methyl-D-aspartate (NMDA) toxicity and decreased NMDA receptor-mediated increases in intracellular Ca(2+). Whole-cell NMDA receptor currents were attenuated 39+/-2% and 21+/-3% by 1 mM DIDS and SITS, respectively. Other Cl(-) channel blockers as equipotent as DIDS and SITS did not decrease oxygen-glucose deprivation- or NMDA-mediated neuronal Ca(2+) influx or toxicity. Neurotoxicity by exogenous glutamate was not prevented by SITS and was exacerbated by DIDS. Reductions in oxygen-glucose deprivation-induced increases in intracellular Ca(2+) levels underlie neuroprotection by DIDS and SITS. This was a reflection of lower extracellular [glutamate], direct inhibition of Ca(2+) influx through postsynaptic NMDA receptors, and possibly through other protective properties associated with DIDS and SITSNRC publication: Ye

    Cell placement and guidance on substrates for neurochip interfaces

    No full text
    Interface devices such as integrated planar patch-clamp chips are being developed to study the electrophysiological activity of neuronal networks grown in vitro. The utility of such devices will be dependent upon the ability to align neurons with interface features on the chip by controlling neuronal placement and by guiding cell connectivity. In this paper, we present a strategy to accomplish this goal. Patterned chemical modification of SiN surfaces with poly-D-lysine transferred from PDMS stamps was used to promote adhesion and guidance of cryo-preserved primary rat cortical neurons. We demonstrate that these neurons can be positioned and grown over microhole features which will ultimately serve as patch-clamp interfaces on the chip.Peer reviewed: NoNRC publication: Ye

    Development of patch-clamp chips for mammalian cell applications

    No full text
    We have previously described the designs of two planar patch-clamp neurochips and their application to the electrophysiological study of molluscan neurons cultured on-chip. Neuron attachment and growth over apertures on the neurochip surface permitted the acquisition of whole-cell patch-clamp recordings. To broaden the application of these neurochips from molluscan to mammalian neurons, we conducted a study of cell-to-aperture interaction to optimize conditions for these smaller, more fragile cells. For this purpose, we designed a \u201csieve\u201d chip having multiple apertures on its surface. Random growth of rat cortical neurons resulted in a 32% (n = 324) probability of cell growth over 2 \u3bcm diameter apertures; larger diameters resulted in growth through the aperture. Based on these findings, single-aperture neurochips were fabricated having 2 \u3bcm diameter aperture and preliminary electrophysiological recordings from cortical cultures at 14 DIV are presented. The implications of this study for the next-generation neurochips are discussed.Peer reviewed: YesNRC publication: Ye

    Culturing and electrophysiology of cells on NRCC patch-clamp chips

    No full text
    Due to its exquisite sensitivity and the ability to monitor and control individual cells at the level of ion channels, patch-clamping is the gold standard of electrophysiology applied to disease models and pharmaceutical screens alike 1. The method traditionally involves gently contacting a cell with a glass pipette filled by a physiological solution in order to isolate a patch of the membrane under its apex 2. An electrode inserted in the pipette captures ion-channel activity within the membrane patch or, when ruptured, for the whole cell. In the last decade, patch-clamp chips have been proposed as an alternative 3, 4: a suspended film separates the physiological medium from the culture medium, and an aperture microfabricated in the film replaces the apex of the pipette. Patch-clamp chips have been integrated in automated systems and commercialized for high-throughput screening 5. To increase throughput, they include the fluidic delivery of cells from suspension, their positioning on the aperture by suction, and automated routines to detect cell-to-probe seals and enter into whole cell mode. We have reported on the fabrication of a silicon patch-clamp chip with optimized impedance and orifice shape that permits the high-quality recording of action potentials in cultured snail neurons 6; recently, we have also reported progress towards interrogating mammalian neurons 7. Our patch-clamp chips are fabricated at the Canadian Photonics Fabrication Centre 8, a commercial foundry, and are available in large series. We are eager to engage in collaborations with electrophysiologists to validate the use of the NRCC technology in different models. The chips are used according to the general scheme represented in Figure 1: the silicon chip is at the bottom of a Plexiglas culture vial and the back of the aperture is connected to a subterranean channel fitted with tubes at either end of the package. Cells are cultured in the vial and the cell on top of the probe is monitored by a measuring electrode inserted in the channel.The two outside fluidic ports facilitate solution exchange with minimal disturbance to the cell; this is an advantage compared to glass pipettes for intracellular perfusion.Peer reviewed: YesNRC publication: Ye

    High-fidelity patch-clamp recordings from neurons cultured on a polymer microchip

    No full text
    We present a polymer microchip capable of moni- toring neuronal activity with a fidelity never before obtained on a planar patch-clamp device. Cardio-respiratory neurons Left Pedal Dorsal 1 (LPeD1) from mollusc Lymnaea were cultured on the microchip’s polyimide surface for 2 to 4 hours. Cultured neurons formed high resistance seals (gigaseals) between the cell membrane and the surface surrounding apertures etched in the polyimide. Gigaseal formation was observed without applying external force, such as suction, on neurons. The formation of gigaseals, as well as the low access resistance and shunt capacitance values of the polymer microchip resulted in high-fidelity recordings. On-chip culture of neurons permitted, for the first time on a polymeric patch-clamp device, the recording of high fidelity physiological action potentials. Microfabrication of the hybrid poly(dimethylsiloxane)–poly- imide (PDMS-PI) microchip is discussed, including a two-layer PDMS processing technique resulting in minimized shrinking variations
    corecore