4,479 research outputs found
The convection-diffusion equation for a finite domain with time varying boundaries
A solution is developed for a convection-diffusion equation describing
chemical transport with sorption, decay, and production. The problem is
formulated in a finite domain where the appropriate conservation law yields
Robin conditions at the ends. When the input concentration is arbitrary, the
problem is underdetermined because of an unknown exit concentration. We resolve
this by defining the exit concentration as a solution to a similar diffusion
equation which satisfies a Dirichlet condition at the left end of the half
line. This problem does not appear to have been solved in the literature, and
the resulting representation should be useful for problems of practical
interest. Authors of previous works on problems of this type have eliminated
the unknown exit concentration by assuming a continuous concentration at the
outflow boundary. This yields a well-posed problem by forcing a homogeneous
Neumann exit, widely known as the Danckwerts [1] condition. We provide a
solution to the Neumann problem and use it to produce an estimate which
demonstrates that the Danckwerts condition implies a zero concentration at the
outflow boundary, even for a long flow domain and a large time.Comment: W. J. Golz and J. R. Dorroh. 2001. The Convection-diffusion equation
for a finite domain with time varying boundaries. Applied Mathematics Letters
14 : 983-988 (received by AML September 2000; accepted by AML October 2000
The HPx software for multicomponent reactive transport during variably-saturated flow: Recent developments and applications
Abstract
HPx is a multicomponent reactive transport model which uses HYDRUS as the flow and transport solver and PHREEQC-3 as the biogeochemical solver. Some recent adaptations have significantly increased the flexibility of the software for different environmental and engineering applications. This paper gives an overview of the most significant changes of HPx, such as coupling transport properties to geochemical state variables, gas diffusion, and transport in two and three dimensions. OpenMP allows for parallel computing using shared memory. Enhancements for scripting may eventually simplify input definitions and create possibilities for defining templates for generic (sub)problems. We included a discussion of root solute uptake and colloid-affected solute transport to show that most or all of the comprehensive features of HYDRUS can be extended with geochemical information. Finally, an example is used to demonstrate how HPx, and similar reactive transport models, can be helpful in implementing different factors relevant for soil organic matter dynamics in soils. HPx offers a unique framework to couple spatial-temporal variations in water contents, temperatures, and water fluxes, with dissolved organic matter and CO2 transport, as well as bioturbation processes
Recommended from our members
Long-term electrode behavior during treatment of arsenic contaminated groundwater by a pilot-scale iron electrocoagulation system.
Iron electrocoagulation (Fe-EC) is an effective technology to remove arsenic (As) from groundwater used for drinking. A commonly noted limitation of Fe-EC is fouling or passivation of electrode surfaces via rust accumulation over long-term use. In this study, we examined the effect of removing electrode surface layers on the performance of a large-scale (10,000 L/d capacity) Fe-EC plant in West Bengal, India. We also characterized the layers formed on the electrodes in active use for over 2 years at this plant. The electrode surfaces developed three distinct horizontal sections of layers that consisted of different minerals: calcite, Fe(III) precipitates and magnetite near the top, magnetite in the middle, and Fe(III) precipitates and magnetite near the bottom. The interior of all surface layers adjacent to the Fe(0) metal was dominated by magnetite. We determined the impact of surface layer removal by mechanical abrasion on Fe-EC performance by measuring solution composition (As, Fe, P, Si, Mn, Ca, pH, DO) and electrochemical parameters (total cell voltage and electrode interface potentials) during electrolysis. After electrode cleaning, the Fe concentration in the bulk solution increased substantially from 15.2 to 41.5 mg/L. This higher Fe concentration led to increased removal of a number of solutes. For As, the concentration reached below the 10 μg/L WHO MCL more rapidly and with less total Fe consumed (i.e. less electrical energy) after cleaning (128.4 μg/L As removed per kWh) compared to before cleaning (72.9 μg/L As removed per kWh). Similarly, the removal of P and Si improved after cleaning by 0.3 mg/L/kWh and 1.1 mg/L/kWh, respectively. Our results show that mechanically removing the surface layers that accumulate on electrodes over extended periods of Fe-EC operation can restore Fe-EC system efficiency (concentration of solute removed/kWh delivered). Since Fe release into the bulk solution substantially increased upon electrode cleaning, our results also suggest that routine electrode maintenance can ensure robust and reliable Fe-EC performance over year-long timescales
A model of dispersive transport across sharp interfaces between porous materials
Recent laboratory experiments on solute migration in composite porous columns
have shown an asymmetry in the solute arrival time upon reversal of the flow
direction, which is not explained by current paradigms of transport. In this
work, we propose a definition for the solute flux across sharp interfaces and
explore the underlying microscopic particle dynamics by applying Monte Carlo
simulation. Our results are consistent with previous experimental findings and
explain the observed transport asymmetry. An interpretation of the proposed
physical mechanism in terms of a flux rectification is also provided. The
approach is quite general and can be extended to other situations involving
transport across sharp interfaces.Comment: 4 pages, 4 figure
Recommended from our members
Rapid and Efficient Arsenic Removal by Iron Electrocoagulation Enabled with in Situ Generation of Hydrogen Peroxide.
Millions of people are exposed to toxic levels of dissolved arsenic in groundwater used for drinking. Iron electrocoagulation (FeEC) has been demonstrated as an effective technology to remove arsenic at an affordable price. However, FeEC requires long operating times (∼hours) to remove dissolved arsenic due to inherent kinetics limitations. Air cathode Assisted Iron Electrocoagulation (ACAIE) overcomes this limitation by cathodically generating H2O2 in situ. In ACAIE operation, rapid oxidation of Fe(II) and complete oxidation and removal of As(III) are achieved. We compare FeEC and ACAIE for removing As(III) from an initial concentration of 1464 μg/L, aiming for a final concentration of less than 4 μg/L. We demonstrate that at short electrolysis times (0.5 min), i.e., high charge dosage rates (1200 C/L/min), ACAIE consistently outperformed FeEC in bringing arsenic levels to less than WHO-MCL of 10 μg/L. Using XRD and XAS data, we conclusively show that poor arsenic removal in FeEC arises from incomplete As(III) oxidation, ineffective Fe(II) oxidation and the formation of Fe(II-III) (hydr)oxides at short electrolysis times (<20 min). Finally, we report successful ACAIE performance (retention time 19 s) in removing dissolved arsenic from contaminated groundwater in rural California
- …