21 research outputs found

    Polyploidization in liver tissue.

    Get PDF
    International audiencePolyploidy (alias whole genome amplification) refers to organisms containing more than two basic sets of chromosomes. Polyploidy was first observed in plants more than a century ago, and it is known that such processes occur in many eukaryotes under a variety of circumstances. In mammals, the development of polyploid cells can contribute to tissue differentiation and, therefore, possibly a gain of function; alternately, it can be associated with development of disease, such as cancer. Polyploidy can occur because of cell fusion or abnormal cell division (endoreplication, mitotic slippage, or cytokinesis failure). Polyploidy is a common characteristic of the mammalian liver. Polyploidization occurs mainly during liver development, but also in adults with increasing age or because of cellular stress (eg, surgical resection, toxic exposure, or viral infections). This review will explore the mechanisms that lead to the development of polyploid cells, our current state of understanding of how polyploidization is regulated during liver growth, and its consequence on liver function

    Upregulation of the Mevalonate Pathway through EWSR1-FLI1/EGR2 Regulatory Axis Confers Ewing Cells Exquisite Sensitivity to Statins

    Full text link
    Ewing sarcoma (EwS) is an aggressive primary bone cancer in children and young adults characterized by oncogenic fusions between genes encoding FET-RNA-binding proteins and ETS transcription factors, the most frequent fusion being EWSR1-FLI1. We show that EGR2, an Ewing-susceptibility gene and an essential direct target of EWSR1-FLI1, directly regulates the transcription of genes encoding key enzymes of the mevalonate (MVA) pathway. Consequently, Ewing sarcoma is one of the tumors that expresses the highest levels of mevalonate pathway genes. Moreover, genome-wide screens indicate that MVA pathway genes constitute major dependencies of Ewing cells. Accordingly, the statin inhibitors of HMG-CoA-reductase, a rate-limiting enzyme of the MVA pathway, demonstrate cytotoxicity in EwS. Statins induce increased ROS and lipid peroxidation levels, as well as decreased membrane localization of prenylated proteins, such as small GTP proteins. These metabolic effects lead to an alteration in the dynamics of S-phase progression and to apoptosis. Statin-induced effects can be rescued by downstream products of the MVA pathway. Finally, we further show that statins impair tumor growth in different Ewing PDX models. Altogether, the data show that statins, which are off-patent, well-tolerated, and inexpensive compounds, should be strongly considered in the therapeutic arsenal against this deadly childhood disease. Keywords: Ewing sarcoma; MVA pathway; new therapeutic strategy; statin

    Pas de titre traduit

    No full text
    Pas de résumé en françaisPas de résumé en anglai

    Liver polyploidy: Dr Jekyll or Mr Hide?

    No full text
    International audienceno abstract

    Tumor Cells and Cancer-Associated Fibroblasts: An Updated Metabolic Perspective

    No full text
    During the past decades, metabolism and redox imbalance have gained considerable attention in the cancer field. In addition to the well-known Warburg effect occurring in tumor cells, numerous other metabolic deregulations have now been reported. Indeed, metabolic reprograming in cancer is much more heterogeneous than initially thought. In particular, a high diversity of carbon sources used by tumor cells has now been shown to contribute to this metabolic heterogeneity in cancer. Moreover, the molecular mechanisms newly highlighted are multiple and shed light on novel actors. Furthermore, the impact of this metabolic heterogeneity on tumor microenvironment has also been an intense subject of research recently. Here, we will describe the new metabolic pathways newly uncovered in tumor cells. We will also have a particular focus on Cancer-Associated Fibroblasts (CAF), whose identity, function and metabolism have been recently under profound investigation. In that sense, we will discuss about the metabolic crosstalk between tumor cells and CAF

    Tumor Cells and Cancer-Associated Fibroblasts: An Updated Metabolic Perspective

    No full text
    During the past decades, metabolism and redox imbalance have gained considerable attention in the cancer field. In addition to the well-known Warburg effect occurring in tumor cells, numerous other metabolic deregulations have now been reported. Indeed, metabolic reprograming in cancer is much more heterogeneous than initially thought. In particular, a high diversity of carbon sources used by tumor cells has now been shown to contribute to this metabolic heterogeneity in cancer. Moreover, the molecular mechanisms newly highlighted are multiple and shed light on novel actors. Furthermore, the impact of this metabolic heterogeneity on tumor microenvironment has also been an intense subject of research recently. Here, we will describe the new metabolic pathways newly uncovered in tumor cells. We will also have a particular focus on Cancer-Associated Fibroblasts (CAF), whose identity, function and metabolism have been recently under profound investigation. In that sense, we will discuss about the metabolic crosstalk between tumor cells and CAF

    Hepatocytes Polyploidization and Cell Cycle Control in Liver Physiopathology

    Get PDF
    Most cells in mammalian tissues usually contain a diploid complement of chromosomes. However, numerous studies have demonstrated a major role of “diploid-polyploid conversion” during physiopathological processes in several tissues. In the liver parenchyma, progressive polyploidization of hepatocytes takes place during postnatal growth. Indeed, at the suckling-weaning transition, cytokinesis failure events induce the genesis of binucleated tetraploid liver cells. Insulin signalling, through regulation of the PI3K/Akt signalling pathway, is essential in the establishment of liver tetraploidization by controlling cytoskeletal organisation and consequently mitosis progression. Liver cell polyploidy is generally considered to indicate terminal differentiation and senescence, and both lead to a progressive loss of cell pluripotency associated to a markedly decreased replication capacity. Although adult liver is a quiescent organ, it retains a capacity to proliferate and to modulate its ploidy in response to various stimuli or aggression (partial hepatectomy, metabolic overload (i.e., high copper and iron hepatic levels), oxidative stress, toxic insult, and chronic hepatitis etc.). Here we review the mechanisms and functional consequences of hepatocytes polyploidization during normal and pathological liver growth

    Heterogeneity in Cancer Metabolism: New Concepts in an Old Field

    No full text
    International audienceSignificance: In the last years, metabolic reprogramming, fluctuations in bioenergetic fuels, and modulation of oxidative stress became new key hallmarks of tumor development. In cancer, elevated glucose uptake and high glycolytic rate, as a source of adenosine triphosphate, constitute a growth advantage for tumors. This represents the universally known Warburg effect, which gave rise to one major clinical application for detecting cancer cells using glucose analogs: the positron emission tomography scan imaging. Recent Advances: Glucose utilization and carbon sources in tumors are much more heterogeneous than initially thought. Indeed, new studies emerged and revealed a dual capacity of tumor cells for glycolytic and oxidative phosphorylation (OXPHOS) metabolism. OXPHOS metabolism, which relies predominantly on mitochondrial respiration, exhibits fine-tuned regulation of respiratory chain complexes and enhanced antioxidant response or detoxification capacity. Critical Issues: OXPHOS-dependent cancer cells use alternative oxidizable substrates, such as glutamine and fatty acids. The diversity of carbon substrates fueling neoplastic cells is indicative of metabolic heterogeneity, even within tumors sharing the same clinical diagnosis. Metabolic switch supports cancer cell stemness and their bioenergy-consuming functions, such as proliferation, survival, migration, and invasion. Moreover, re-active oxygen species-induced mitochondrial metabolism and nutrient availability are important for interaction with tumor microenvironment components. Carcinoma-associated fibroblasts and immune cells participate in the metabolic interplay with neoplastic cells. They collectively adapt in a dynamic manner to the metabolic needs of cancer cells, thus participating in tumorigenesis and resistance to treatments. Future Directions: Characterizing the reciprocal metabolic interplay between stromal, immune, and neoplastic cells will provide a better understanding of treatment resistance. Antioxid. Redox Signal. 26, 462-485

    Upregulation of the Mevalonate Pathway through EWSR1-FLI1/EGR2 Regulatory Axis Confers Ewing Cells Exquisite Sensitivity to Statins

    No full text
    Ewing sarcoma (EwS) is an aggressive primary bone cancer in children and young adults characterized by oncogenic fusions between genes encoding FET-RNA-binding proteins and ETS transcription factors, the most frequent fusion being EWSR1-FLI1. We show that EGR2, an Ewing-susceptibility gene and an essential direct target of EWSR1-FLI1, directly regulates the transcription of genes encoding key enzymes of the mevalonate (MVA) pathway. Consequently, Ewing sarcoma is one of the tumors that expresses the highest levels of mevalonate pathway genes. Moreover, genome-wide screens indicate that MVA pathway genes constitute major dependencies of Ewing cells. Accordingly, the statin inhibitors of HMG-CoA-reductase, a rate-limiting enzyme of the MVA pathway, demonstrate cytotoxicity in EwS. Statins induce increased ROS and lipid peroxidation levels, as well as decreased membrane localization of prenylated proteins, such as small GTP proteins. These metabolic effects lead to an alteration in the dynamics of S-phase progression and to apoptosis. Statin-induced effects can be rescued by downstream products of the MVA pathway. Finally, we further show that statins impair tumor growth in different Ewing PDX models. Altogether, the data show that statins, which are off-patent, well-tolerated, and inexpensive compounds, should be strongly considered in the therapeutic arsenal against this deadly childhood disease

    miR200-regulated CXCL12ÎČ promotes fibroblast heterogeneity and immunosuppression in ovarian cancers

    No full text
    Cancer-associated fibroblasts (CAFs) are an important part of the tumor microenvironment. Here the authors characterize four subsets of CAFs across human samples of ovarian cancer subtypes and show in the mesenchymal subtype a specific CAF-S1 population that attracts immunosuppressive Tregs via CXCL12ÎČ
    corecore