247 research outputs found

    Original paper Cell free DNA as a marker of training status in weightlifters

    Get PDF
    The purpose of this investigation was to elucidate the changes in cf-DNA as it relates to fluctuations in resistance training workloads and intensities. The relationship between cell free DNA (cf-DNA), C-reactive protein (CRP), creatine kinase (CK), testosterone (T), cortisol (C), testosterone-cortisol ratio (T:C), body mass and body composition were also examined. Eight weightlifters (5 males and 3 females, age = 25 ± 3.5 yr, body mass = 88.3 ± 22.7 kg, height = 173.8 ±8.4 cm) volunteered to participate in this study. Venous blood samples, body mass and body composition were taken six times, each corresponding to the end of a training phase. CK (p = 0.018, η² = 0.409) and CK %Δ (p \u3c 0.001, η² = 0.594) were the only biochemical variables to reach statistical significance at any point. A number of statistically significant correlations were found among variables. VLD4wk was related to CK %Δ (r = 0.86), VLD4wk %Δ was related CK %Δ (r = 0.86) and TID1wk was related to CRP (r = 0.83). cf-DNA %Δ was correlated with CRP and CRP %Δ (r = 0.83 and 0.86, respectively). CRP and CRP %Δ were correlated with BF % (r = 0.94 and 0.92, respectively). CK and CK %Δ were both related to T:C (r = 0.94 and 0.89, respectively) and T:C %Δ (r = 0.87 and 0.86, respectively). The correlation between cf-DNA and CRP suggests that cf-DNA may be a valuable indicator of inflammation in weightlifters

    Cell Free Dna As A Marker Of Training Status In Weightlifters

    Get PDF
    The purpose of this investigation was to elucidate the changes in cf-DNA as it relates to fluctuations in resistance training workloads and intensities. The relationship between cell free DNA (cf-DNA), C-reactive protein (CRP), creatine kinase (CK), testosterone (T), cortisol (C), testosterone-cortisol ratio (T:C), body mass and body composition were also examined. Eight weightlifters (5 males and 3 females, age = 25 ± 3.5 yr, body mass = 88.3 ± 22.7 kg, height = 173.8 ±8.4 cm) volunteered to participate in this study. Venous blood samples, body mass and body composition were taken six times, each corresponding to the end of a training phase. CK (p = 0.018, η² = 0.409) and CK %Δ (p \u3c 0.001, η² = 0.594) were the only biochemical variables to reach statistical significance at any point. A number of statistically significant correlations were found among variables. VLD4wk was related to CK %Δ (r = 0.86), VLD4wk %Δ was related CK %Δ (r = 0.86) and TID1wk was related to CRP (r = 0.83). cf-DNA %Δ was correlated with CRP and CRP %Δ (r = 0.83 and 0.86, respectively). CRP and CRP %Δ were correlated with BF % (r = 0.94 and 0.92, respectively). CK and CK %Δ were both related to T:C (r = 0.94 and 0.89, respectively) and T:C %Δ (r = 0.87 and 0.86, respectively). The correlation between cf-DNA and CRP suggests that cf-DNA may be a valuable indicator of inflammation in weightlifters

    Cell Free DNA as a Marker of Training Status in Weightlifters

    Get PDF
    The purpose of this investigation was to elucidate the changes in cf-DNA as it relates to fluctuations in resistance training workloads and intensities. The relationship between cell free DNA (cf-DNA), C-reactive protein (CRP), creatine kinase (CK), testosterone (T), cortisol (C), testosterone-cortisol ratio (T:C), body mass and body composition were also examined. Eight weightlifters (5 males and 3 females, age = 25 ± 3.5 yr, body mass = 88.3 ± 22.7 kg, height = 173.8 ±8.4 cm) volunteered to participate in this study. Venous blood samples, body mass and body composition were taken six times, each corresponding to the end of a training phase. CK (p = 0.018, η² = 0.409) and CK %Δ (p \u3c 0.001, η² = 0.594) were the only biochemical variables to reach statistical significance at any point. A number of statistically significant correlations were found among variables. VLD4wk was related to CK %Δ (r = 0.86), VLD4wk %Δ was related CK %Δ (r = 0.86) and TID1wk was related to CRP (r = 0.83). cf-DNA %Δ was correlated with CRP and CRP %Δ (r = 0.83 and 0.86, respectively). CRP and CRP %Δ were correlated with BF % (r = 0.94 and 0.92, respectively). CK and CK %Δ were both related to T:C (r = 0.94 and 0.89, respectively) and T:C %Δ (r = 0.87 and 0.86, respectively). The correlation between cf-DNA and CRP suggests that cf-DNA may be a valuable indicator of inflammation in weightlifters

    Maternal Anti-Dengue IgG Fucosylation Predicts Susceptibility to Dengue Disease in Infants

    Get PDF
    Infant mortality from dengue disease is a devastating global health burden that could be minimized with the ability to identify susceptibility for severe disease prior to infection. Although most primary infant dengue infections are asymptomatic, maternally derived anti-dengue immunoglobulin G (IgGs) present during infection can trigger progression to severe disease through antibody-dependent enhancement mechanisms. Importantly, specific characteristics of maternal IgGs that herald progression to severe infant dengue are unknown. Here, we define \u3e /=10% afucosylation of maternal anti-dengue IgGs as a risk factor for susceptibility of infants to symptomatic dengue infections. Mechanistic experiments show that afucosylation of anti-dengue IgGs promotes FcgammaRIIIa signaling during infection, in turn enhancing dengue virus replication in FcgammaRIIIa(+) monocytes. These studies identify a post-translational modification of anti-dengue IgGs that correlates with risk for symptomatic infant dengue infections and define a mechanism by which afucosylated antibodies and FcgammaRIIIa enhance dengue infections

    Regions identity between the genome of vertebrates and non-retroviral families of insect viruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The scope of our understanding of the evolutionary history between viruses and animals is limited. The fact that the recent availability of many complete insect virus genomes and vertebrate genomes as well as the ability to screen these sequences makes it possible to gain a new perspective insight into the evolutionary interaction between insect viruses and vertebrates. This study is to determine the possibility of existence of sequence identity between the genomes of insect viruses and vertebrates, attempt to explain this phenomenon in term of genetic mobile element, and try to investigate the evolutionary relationship between these short regions of identity among these species.</p> <p>Results</p> <p>Some of studied insect viruses contain variable numbers of short regions of sequence identity to the genomes of vertebrate with nucleotide sequence length from 28 bp to 124 bp. They are found to locate in multiple sites of the vertebrate genomes. The ontology of animal genes with identical regions involves in several processes including chromatin remodeling, regulation of apoptosis, signaling pathway, nerve system development and some enzyme-like catalysis. Phylogenetic analysis reveals that at least some short regions of sequence identity in the genomes of vertebrate are derived the ancestral of insect viruses.</p> <p>Conclusion</p> <p>Short regions of sequence identity were found in the vertebrates and insect viruses. These sequences played an important role not only in the long-term evolution of vertebrates, but also in promotion of insect virus. This typical win-win strategy may come from natural selection.</p

    Minimal Absent Words in Prokaryotic and Eukaryotic Genomes

    Get PDF
    Minimal absent words have been computed in genomes of organisms from all domains of life. Here, we explore different sets of minimal absent words in the genomes of 22 organisms (one archaeota, thirteen bacteria and eight eukaryotes). We investigate if the mutational biases that may explain the deficit of the shortest absent words in vertebrates are also pervasive in other absent words, namely in minimal absent words, as well as to other organisms. We find that the compositional biases observed for the shortest absent words in vertebrates are not uniform throughout different sets of minimal absent words. We further investigate the hypothesis of the inheritance of minimal absent words through common ancestry from the similarity in dinucleotide relative abundances of different sets of minimal absent words, and find that this inheritance may be exclusive to vertebrates

    RsaI repetitive DNA in Buffalo Bubalus bubalis representing retrotransposons, conserved in bovids, are part of the functional genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Repetitive sequences are the major components of the eukaryotic genomes. Association of these repeats with transcribing sequences and their regulation in buffalo <it>Bubalus bubalis </it>has remained largely unresolved.</p> <p>Results</p> <p>We cloned and sequenced <it>RsaI </it>repeat fragments pDp1, pDp2, pDp3, pDp4 of 1331, 651, 603 and 339 base pairs, respectively from the buffalo, <it>Bubalus bubalis</it>. Upon characterization, these fragments were found to represent retrotransposons and part of some functional genes. The resultant clones showed cross hybridization only with buffalo, cattle, goat and sheep genomic DNA. Real Time PCR, detected ~2 × 10<sup>4 </sup>copies of pDp1, ~ 3000 copies of pDp2 and pDp3 and ~ 1000 of pDp4 in buffalo, cattle, goat and sheep genomes, respectively. <it>RsaI </it>repeats are transcriptionally active in somatic tissues and spermatozoa. Accordingly, pDp1 showed maximum expression in lung, pDp2 and pDp3 both in Kidney, and pDp4 in ovary. Fluorescence <it>in situ </it>hybridization showed repeats to be distributed all across the chromosomes.</p> <p>Conclusions</p> <p>The data suggest that <it>RsaI </it>repeats have been incorporated into the exonic regions of various transcribing genes, possibly contributing towards the architecture and evolution of the buffalo and related genomes. Prospects of our present work in the context of comparative and functional genomics are highlighted.</p

    The over-representation of binary DNA tracts in seven sequenced chromosomes

    Get PDF
    BACKGROUND: DNA tracts composed of only two bases are possible in six combinations: A+G (purines, R), C+T (pyrimidines, Y), G+T (Keto, K), A+C (Imino, M), A+T (Weak, W) and G+C (Strong, S). It is long known that all-pyrimidine tracts, complemented by all-purines tracts ("R.Y tracts"), are excessively present in analyzed DNA. We have previously shown that R.Y tracts are in vast excess in yeast promoters, and brought evidence for their role in gene regulation. Here we report the systematic mapping of all six binary combinations on the level of complete sequenced chromosomes, as well as in their different subregions. RESULTS: DNA tracts composed of the above binary base combinations have been mapped in seven sequenced chromosomes: Human chromosomes 21 and 22 (the major contigs); Drosophila melanogaster chr. 2R; Caenorhabditis elegans chr. I; Arabidopsis thaliana chr. II; Saccharomyces cerevisiae chr. IV and M. jannaschii. A huge over-representation, reaching million-folds, has been found for very long tracts of all binary motifs except S, in each of the seven organisms. Long R.Y tracts are the most excessive, except in D. melanogaster, where the K.M motif predominates. S (G, C rich) tracts are in excess mainly in CpG islands; the W motif predominates in bacteria. Many excessively long W tracts are nevertheless found also in the archeon and in the eukaryotes. The survey of complete chromosomes enables us, for the first time, to map systematically the intergenic regions. In human and other chromosomes we find the highest over-representation of the binary DNA tracts in the intergenic regions. These over-representations are only partly explainable by the presence of interspersed elements. CONCLUSIONS: The over-representation of long DNA tracts composed of five of the above motifs is the largest deviation from randomness so far established for DNA, and this in a wide range of eukaryotic and archeal chromosomes. A propensity for ready DNA unwinding is proposed as the functional role, explaining the evolutionary conservation of the huge excesses observed
    corecore