7,483 research outputs found

    Combined Solar System and rotation curve constraints on MOND

    Get PDF
    The Modified Newtonian Dynamics (MOND) paradigm generically predicts that the external gravitational field in which a system is embedded can produce effects on its internal dynamics. In this communication, we first show that this External Field Effect can significantly improve some galactic rotation curves fits by decreasing the predicted velocities of the external part of the rotation curves. In modified gravity versions of MOND, this External Field Effect also appears in the Solar System and leads to a very good way to constrain the transition function of the theory. A combined analysis of the galactic rotation curves and Solar System constraints (provided by the Cassini spacecraft) rules out several classes of popular MOND transition functions, but leaves others viable. Moreover, we show that LISA Pathfinder will not be able to improve the current constraints on these still viable transition functions.Comment: 13 pages, 7 figures, accepted for publication in MNRA

    Basins of attraction in forced systems with time-varying dissipation

    Get PDF
    We consider dissipative periodically forced systems and investigate cases in which having information as to how the system behaves for constant dissipation may be used when dissipation varies in time before settling at a constant final value. First, we consider situations where one is interested in the basins of attraction for damping coefficients varying linearly between two given values over many different time intervals: we outline a method to reduce the computation time required to estimate numerically the relative areas of the basins and discuss its range of applicability. Second, we observe that sometimes very slight changes in the time interval may produce abrupt large variations in the relative areas of the basins of attraction of the surviving attractors: we show how comparing the contracted phase space at a time after the final value of dissipation has been reached with the basins of attraction corresponding to that value of constant dissipation can explain the presence of such variations. Both procedures are illustrated by application to a pendulum with periodically oscillating support.Comment: 16 pages, 13 figures, 7 table

    Power computation for the triboelectric nanogenerator

    Full text link
    We consider, from a mathematical perspective, the power generated by a contact-mode triboelectric nanogenerator, an energy harvesting device that has been well studied recently. We encapsulate the behaviour of the device in a differential equation, which although linear and of first order, has periodic coefficients, leading to some interesting mathematical problems. In studying these, we derive approximate forms for the mean power generated and the current waveforms, and describe a procedure for computing the Fourier coefficients for the current, enabling us to show how the power is distributed over the harmonics. Comparisons with accurate numerics validate our analysis

    Quasi-periodic attractors, Borel summability and the Bryuno condition for strongly dissipative systems

    Full text link
    We consider a class of ordinary differential equations describing one-dimensional analytic systems with a quasi-periodic forcing term and in the presence of damping. In the limit of large damping, under some generic non-degeneracy condition on the force, there are quasi-periodic solutions which have the same frequency vector as the forcing term. We prove that such solutions are Borel summable at the origin when the frequency vector is either any one-dimensional number or a two-dimensional vector such that the ratio of its components is an irrational number of constant type. In the first case the proof given simplifies that provided in a previous work of ours. We also show that in any dimension dd, for the existence of a quasi-periodic solution with the same frequency vector as the forcing term, the standard Diophantine condition can be weakened into the Bryuno condition. In all cases, under a suitable positivity condition, the quasi-periodic solution is proved to describe a local attractor.Comment: 10 page

    Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos

    Get PDF
    In this article we continue to test cosmological models centred on Modified Newtonian Dynamics (MOND) with light sterile neutrinos, which could in principle be a way to solve the fine-tuning problems of the standard model on galaxy scales while preserving successful predictions on larger scales. Due to previous failures of the simple MOND cosmological model, here we test a speculative model where the modified gravitational field is produced only by the baryons and the sterile neutrinos produce a purely Newtonian field (hence Modified Baryonic Dynamics). We use two component cosmological simulations to separate the baryonic N-body particles from the sterile neutrino ones. The premise is to attenuate the over-production of massive galaxy cluster halos which were prevalent in the original MOND plus light sterile neutrinos scenario. Theoretical issues with such a formulation notwithstanding, the Modified Baryonic Dynamics model fails to produce the correct amplitude for the galaxy cluster mass function for any reasonable value of the primordial power spectrum normalisation.Comment: 11 pages, 2 figures. Submitted to JCA

    The Galactic potential and the asymmetric distribution of hypervelocity stars

    Full text link
    In recent years several hypervelocity stars (HVSs) have been observed in the halo of our Galaxy. Such HVSs have possibly been ejected from the Galactic center and then propagated in the Galactic potential up to their current position. The recent survey for candidate HVSs show an asymmetry in the kinematics of candidate HVSs (position and velocity vectors), where more outgoing stars than ingoing stars (i.e. positive Galactocentric velocities vs. negative ones) are observed. We show that such kinematic asymmetry, which is likely due to the finite lifetime of the stars and Galactic potential structure, could be used in a novel method to probe and constrain the Galactic potential, identify the stellar type of the stars in the survey and estimate the number of HVSs. Kinematics-independent identification of the stellar types of the stars in such surveys (e.g. spectroscopic identification) could further improve these results. We find that the observed asymmetry between ingoing and outgoing stars favors specific Galactic potential models. It also implies a lower limit of ~54+-8 main sequence HVSs in the survey sample (>=648+-96 in the Galaxy), assuming that all of the main sequence stars in the survey originate from the Galactic center. The other stars in the survey are likely to be hot blue horizontal branch stars born in the halo rather than stars ejected from the Galactic center.Comment: 7 pages, 3 figures. Added an appendix. Accepted to Ap

    The wedding of modified dynamics and non-exotic dark matter in galaxy clusters

    Full text link
    We summarize the status of Modified Newtonian Dynamics (MOND) in galaxy clusters. The observed acceleration is typically larger than the acceleration threshold of MOND in the central regions, implying that some dark matter is necessary to explain the mass discrepancy there. A plausible resolution of this issue is that the unseen mass in MOND is in the form of ordinary neutrinos with masses just below the experimentally detectable limit. In particular, we show that the lensing mass reconstructions of the clusters 1E0657-56 (the bullet cluster) and Cl0024+17 (the ring) do not pose a new challenge to this scenario. However, the mass discrepancy for cool X-ray emitting groups, in which neutrinos cannot cluster, pose a more serious problem, meaning that dark baryons could present a more satisfactory solution to the problem of unseen mass in MOND clusters.Comment: to appear in World Scientific, proceedings of DARK 200
    • …
    corecore