2,910 research outputs found
Forced standing equatorial ocean wave modes
Standing equatorial wave modes are shown to be exact solutions of the forced, linear, inviscid shallow water equations when the forcing is zonally uniform and at a single frequency. If the forcing is equatorially confined in the meridional direction, then so is the directly forced response and the standing mode does not lealr. energy away from the equator...
The annual cycle in the central equatorial Pacific Ocean
A linear, periodic model using the long-wave approximation on the equatorial β-plane is forced by the annual cycle of zonal wind stress from the Pacific Ocean. The forcing is deduced from the monthly data set of Hellerman and Rosenstein. The model results are compared with observations of the annual cycle which are mainly of temperature in the upper central Pacific Ocean from the Hawaii-Tahiti shuttle experiment. The agreement is good in phase, but poor in amplitude. The effect on model results of different friction assumptions and coefficients shows that no tuning of the parameters significantly improves the comparison with observations. The model is also used to study the effects of the forcing function, a sharp thermocline and friction which are all very important in determining the energy distribution below the thermocline. It is shown that beams occur only in the unphysical situation of inviscid flow with simple forms for the forcing function. The poor comparison with observations is used to draw conclusions about the shortcomings of present linear, equatorial models. They are: the buoyancy frequency can only be a function of depth, and the friction assumptions, which keep the vertical modes independent, have unrealistic profiles with depth and do not give realistic amplitudes both in the upper ocean and below the thermocline
The supernova-regulated ISM. II. The mean magnetic field
The origin and structure of the magnetic fields in the interstellar medium of
spiral galaxies is investigated with 3D, non-ideal, compressible MHD
simulations, including stratification in the galactic gravity field,
differential rotation and radiative cooling. A rectangular domain, 1x1x2
kpc^{3} in size, spans both sides of the galactic mid-plane. Supernova
explosions drive transonic turbulence. A seed magnetic field grows
exponentially to reach a statistically steady state within 1.6 Gyr. Following
Germano (1992) we use volume averaging with a Gaussian kernel to separate
magnetic field into a mean field and fluctuations. Such averaging does not
satisfy all Reynolds rules, yet allows a formulation of mean-field theory. The
mean field thus obtained varies in both space and time. Growth rates differ for
the mean-field and fluctuating field and there is clear scale separation
between the two elements, whose integral scales are about 0.7 kpc and 0.3 kpc,
respectively.Comment: 5 pages, 10 figures, submitted to Monthly Notices Letter
The supernova-regulated ISM. I. The multi-phase structure
We simulate the multi-phase interstellar medium randomly heated and stirred
by supernovae, with gravity, differential rotation and other parameters of the
solar neighbourhood. Here we describe in detail both numerical and physical
aspects of the model, including injection of thermal and kinetic energy by SN
explosions, radiative cooling, photoelectric heating and various transport
processes. With 3D domain extending 1 kpc^2 horizontally and 2 kpc vertically,
the model routinely spans gas number densities 10^-5 - 10^2 cm^-3, temperatures
10-10^8 K, local velocities up to 10^3 km s^-1 (with Mach number up to 25).
The thermal structure of the modelled ISM is classified by inspection of the
joint probability density of the gas number density and temperature. We confirm
that most of the complexity can be captured in terms of just three phases,
separated by temperature borderlines at about 10^3 K and 5x10^5 K. The
probability distribution of gas density within each phase is approximately
lognormal. We clarify the connection between the fractional volume of a phase
and its various proxies, and derive an exact relation between the fractional
volume and the filling factors defined in terms of the volume and probabilistic
averages. These results are discussed in both observational and computational
contexts. The correlation scale of the random flows is calculated from the
velocity autocorrelation function; it is of order 100 pc and tends to grow with
distance from the mid-plane. We use two distinct parameterizations of radiative
cooling to show that the multi-phase structure of the gas is robust, as it does
not depend significantly on this choice.Comment: 28 pages, 22 figures and 8 table
Allocation in Practice
How do we allocate scarcere sources? How do we fairly allocate costs? These
are two pressing challenges facing society today. I discuss two recent projects
at NICTA concerning resource and cost allocation. In the first, we have been
working with FoodBank Local, a social startup working in collaboration with
food bank charities around the world to optimise the logistics of collecting
and distributing donated food. Before we can distribute this food, we must
decide how to allocate it to different charities and food kitchens. This gives
rise to a fair division problem with several new dimensions, rarely considered
in the literature. In the second, we have been looking at cost allocation
within the distribution network of a large multinational company. This also has
several new dimensions rarely considered in the literature.Comment: To appear in Proc. of 37th edition of the German Conference on
Artificial Intelligence (KI 2014), Springer LNC
Separating the scales in a compressible interstellar medium
We apply Gaussian smoothing to obtain mean density, velocity, magnetic and
energy density fields in simulations of the interstellar medium based on
three-dimensional magnetohydrodynamic equations in a shearing box
in size. Unlike alternative averaging procedures,
such as horizontal averaging, Gaussian smoothing retains the three-dimensional
structure of the mean fields. Although Gaussian smoothing does not obey the
Reynolds rules of averaging, physically meaningful central statistical moments
are defined as suggested by Germano (1992). We discuss methods to identify an
optimal smoothing scale and the effects of this choice on the results.
From spectral analysis of the magnetic, density and velocity fields, we find a
suitable smoothing length for all three fields, of . We discuss the properties of third-order statistical moments in
fluctuations of kinetic energy density in compressible flows and suggest their
physical interpretation. The mean magnetic field, amplified by a mean-field
dynamo, significantly alters the distribution of kinetic energy in space and
between scales, reducing the magnitude of kinetic energy at intermediate
scales. This intermediate-scale kinetic energy is a useful diagnostic of the
importance of SN-driven outflows
The cholesterol-raising diterpenes from coffee beans increase serum lipid transfer protein activity levels in humans
Cafestol and kahweol–diterpenes present in unfiltered coffee— strongly raise serum VLDL and LDL cholesterol and slightly reduce HDL cholesterol in humans. The mechanism of action is unknown. We determined whether the coffee diterpenes may affect lipoprotein metabolism via effects on lipid transfer proteins and lecithin:cholesterol acyltransferase in a randomized, double-blind cross-over study with 10 healthy male volunteers. Either cafestol (61–64 mg/day) or a mixture of cafestol (60 mg/day) and kahweol (48–54 mg/day) was given for 28 days. Serum activity levels of cholesterylester transfer protein, phospholipid transfer protein and lecithin:cholesterol acyltransferase were measured using exogenous substrate assays. Relative to baseline values, cafestol raised the mean (±S.D.) activity of cholesterylester transfer protein by 18±12% and of phospholipid transfer protein by 21±14% (both P<0.001). Relative to cafestol alone, kahweol had no significant additional effects. Lecithin:cholesterol acyltransferase activity was reduced by 11±12% by cafestol plus kahweol (P=0.02). It is concluded that the effects of coffee diterpenes on plasma lipoproteins may be connected with changes in serum activity levels of lipid transfer proteins
Gentrifying with family wealth:Parental gifts and neighbourhood sorting among young adult owner-occupants
This paper assesses the role of parental gifts in neighbourhood sorting among young adult homebuyers. We make use of high-quality individual-level registry data for two large urban metropolitan areas in the Netherlands. While previous studies have shown that young adults receiving gifts purchase more expensive housing, little is known about the role of gifts in where young adults buy. Our study finds that parental gifts flow into the housing market in a spatially-uneven way. Movers supported by substantial parental gifts are more likely to enter owner-occupied housing in high-status and gentrifying urban neighbourhoods compared to movers without gifts. This study shows that this can only partially be explained by household and parental characteristics and by the uneven distribution of housing values. The remaining effect suggests that parental gifts also play a role in trade-offs regarding spatial residential decision-making. The conclusion discusses the ramifications of our findings for debates on (re)production of class and intra-generational inequalities through housing, and provides avenues for further research
- …