3,550 research outputs found
Confinement induced instability of thin elastic film
A confined incompressible elastic film does not deform uniformly when
subjected to adhesive interfacial stresses but with undulations which have a
characteristic wavelength scaling linearly with the thickness of the film. In
the classical peel geometry, undulations appear along the contact line below a
critical film thickness or below a critical curvature of the plate.
Perturbation analysis of the stress equilibrium equations shows that for a
critically confined film the total excess energy indeed attains a minima for a
finite amplitude of the perturbations which grow with further increase in the
confinement.Comment: 11 pages, 6 figure
Allocation in Practice
How do we allocate scarcere sources? How do we fairly allocate costs? These
are two pressing challenges facing society today. I discuss two recent projects
at NICTA concerning resource and cost allocation. In the first, we have been
working with FoodBank Local, a social startup working in collaboration with
food bank charities around the world to optimise the logistics of collecting
and distributing donated food. Before we can distribute this food, we must
decide how to allocate it to different charities and food kitchens. This gives
rise to a fair division problem with several new dimensions, rarely considered
in the literature. In the second, we have been looking at cost allocation
within the distribution network of a large multinational company. This also has
several new dimensions rarely considered in the literature.Comment: To appear in Proc. of 37th edition of the German Conference on
Artificial Intelligence (KI 2014), Springer LNC
The supernova-regulated ISM. II. The mean magnetic field
The origin and structure of the magnetic fields in the interstellar medium of
spiral galaxies is investigated with 3D, non-ideal, compressible MHD
simulations, including stratification in the galactic gravity field,
differential rotation and radiative cooling. A rectangular domain, 1x1x2
kpc^{3} in size, spans both sides of the galactic mid-plane. Supernova
explosions drive transonic turbulence. A seed magnetic field grows
exponentially to reach a statistically steady state within 1.6 Gyr. Following
Germano (1992) we use volume averaging with a Gaussian kernel to separate
magnetic field into a mean field and fluctuations. Such averaging does not
satisfy all Reynolds rules, yet allows a formulation of mean-field theory. The
mean field thus obtained varies in both space and time. Growth rates differ for
the mean-field and fluctuating field and there is clear scale separation
between the two elements, whose integral scales are about 0.7 kpc and 0.3 kpc,
respectively.Comment: 5 pages, 10 figures, submitted to Monthly Notices Letter
Unfolding the Sulcus
Sulci are localized furrows on the surface of soft materials that form by a
compression-induced instability. We unfold this instability by breaking its
natural scale and translation invariance, and compute a limiting bifurcation
diagram for sulcfication showing that it is a scale-free, sub-critical {\em
nonlinear} instability. In contrast with classical nucleation, sulcification is
{\em continuous}, occurs in purely elastic continua and is structurally stable
in the limit of vanishing surface energy. During loading, a sulcus nucleates at
a point with an upper critical strain and an essential singularity in the
linearized spectrum. On unloading, it quasi-statically shrinks to a point with
a lower critical strain, explained by breaking of scale symmetry. At
intermediate strains the system is linearly stable but nonlinearly unstable
with {\em no} energy barrier. Simple experiments confirm the existence of these
two critical strains.Comment: Main text with supporting appendix. Revised to agree with published
version. New result in the Supplementary Informatio
The supernova-regulated ISM. I. The multi-phase structure
We simulate the multi-phase interstellar medium randomly heated and stirred
by supernovae, with gravity, differential rotation and other parameters of the
solar neighbourhood. Here we describe in detail both numerical and physical
aspects of the model, including injection of thermal and kinetic energy by SN
explosions, radiative cooling, photoelectric heating and various transport
processes. With 3D domain extending 1 kpc^2 horizontally and 2 kpc vertically,
the model routinely spans gas number densities 10^-5 - 10^2 cm^-3, temperatures
10-10^8 K, local velocities up to 10^3 km s^-1 (with Mach number up to 25).
The thermal structure of the modelled ISM is classified by inspection of the
joint probability density of the gas number density and temperature. We confirm
that most of the complexity can be captured in terms of just three phases,
separated by temperature borderlines at about 10^3 K and 5x10^5 K. The
probability distribution of gas density within each phase is approximately
lognormal. We clarify the connection between the fractional volume of a phase
and its various proxies, and derive an exact relation between the fractional
volume and the filling factors defined in terms of the volume and probabilistic
averages. These results are discussed in both observational and computational
contexts. The correlation scale of the random flows is calculated from the
velocity autocorrelation function; it is of order 100 pc and tends to grow with
distance from the mid-plane. We use two distinct parameterizations of radiative
cooling to show that the multi-phase structure of the gas is robust, as it does
not depend significantly on this choice.Comment: 28 pages, 22 figures and 8 table
Specificity in V(D)J recombination: new lessons from biochemistry and genetics
Recent in vitro work on V(D)J recombination has helped to clarify its
mechanism. The first stage of the reaction, which can be reproduced with
the purified RAG1 and RAG2 proteins, is a site-specific cleavage that
generates the same broken DNA species found in vivo. The cleavage reaction
is closely related to known types of transpositional recombination, such
as that of HIV integrase. All the site specificity of V(D)J recombination,
including the 12/23 rule, is determined by the RAG proteins. The later
steps largely overlap with the repair of radiation-induced DNA
double-strand breaks, as indicated by the identity of several newly
characterized factors involved in repair. These developments open the way
for a thorough biochemical study of V(D)J recombination
The cholesterol-raising diterpenes from coffee beans increase serum lipid transfer protein activity levels in humans
Cafestol and kahweol–diterpenes present in unfiltered coffee— strongly raise serum VLDL and LDL cholesterol and slightly reduce HDL cholesterol in humans. The mechanism of action is unknown. We determined whether the coffee diterpenes may affect lipoprotein metabolism via effects on lipid transfer proteins and lecithin:cholesterol acyltransferase in a randomized, double-blind cross-over study with 10 healthy male volunteers. Either cafestol (61–64 mg/day) or a mixture of cafestol (60 mg/day) and kahweol (48–54 mg/day) was given for 28 days. Serum activity levels of cholesterylester transfer protein, phospholipid transfer protein and lecithin:cholesterol acyltransferase were measured using exogenous substrate assays. Relative to baseline values, cafestol raised the mean (±S.D.) activity of cholesterylester transfer protein by 18±12% and of phospholipid transfer protein by 21±14% (both P<0.001). Relative to cafestol alone, kahweol had no significant additional effects. Lecithin:cholesterol acyltransferase activity was reduced by 11±12% by cafestol plus kahweol (P=0.02). It is concluded that the effects of coffee diterpenes on plasma lipoproteins may be connected with changes in serum activity levels of lipid transfer proteins
- …