3,747 research outputs found

    Experimental realization of a measurement conditional unitary operation at single photon level and application to detector characterization

    Full text link
    Our last experimental results on the realization of a measurement-conditional unitary operation at single photon level are presented. This gate operates by rotating by 90o90^o the polarization of a photon produced by means of Type-II Parametric Down Conversion conditional to a polarization measurement on the correlated photon. We then propose a new scheme for measuring the quantum efficiency of a single photon detection apparatus by using this set-up. We present experimental results obtained with this scheme compared with {\it traditional} biphoton calibration. Our results show the interesting potentiality of the suggested scheme.Comment: to appear in Proc. of SPIE meeting, Denver august 200

    Ab initio calculation of the binding energy of impurities in semiconductors: Application to Si nanowires

    Full text link
    We discuss the binding energy E_b of impurities in semiconductors within density functional theory (DFT) and the GW approximation, focusing on donors in nanowires as an example. We show that DFT succeeds in the calculation of E_b from the Kohn-Sham (KS) hamiltonian of the ionized impurity, but fails in the calculation of E_b from the KS hamiltonian of the neutral impurity, as it misses most of the interaction of the bound electron with the surface polarization charges of the donor. We trace this deficiency back to the lack of screened exchange in the present functionals

    Quantum correlation dynamics in photosynthetic processes assisted by molecular vibrations

    Full text link
    During the long course of evolution, nature has learnt how to exploit quantum effects. In fact, recent experiments reveal the existence of quantum processes whose coherence extends over unexpectedly long time and space ranges. In particular, photosynthetic processes in light-harvesting complexes display a typical oscillatory dynamics ascribed to quantum coherence. Here, we consider the simple model where a dimer made of two chromophores is strongly coupled with a quasi-resonant vibrational mode. We observe the occurrence of wide oscillations of genuine quantum correlations, between electronic excitations and the environment, represented by vibrational bosonic modes. Such a quantum dynamics has been unveiled through the calculation of the negativity of entanglement and the discord, indicators widely used in quantum information for quantifying the resources needed to realize quantum technologies. We also discuss the possibility of approximating additional weakly-coupled off-resonant vibrational modes, simulating the disturbances induced by the rest of the environment, by a single vibrational mode. Within this approximation, one can show that the off-resonant bath behaves like a classical source of noise

    A STUDY OF THE DIMENSIONS OF PRINCIPAL LEADERSHIP: HOW DO PRINCIPALS ALLOCATE THEIR TIME AND ENERGY?

    Get PDF
    School principals have important roles in instructional leadership, building management, visionary leadership, culture and climate, and emotional intelligence. The main purpose of this dissertation was to determine how principals allocate their time and energy among these five dimensions of school leadership. The research methodology used was an explanatory sequential mixed-method design. In the quantitative component of the research, a survey was distributed to elementary, middle school, and high school principals in Suffolk County, New York. Demographic information was collected from participants, including gender, years of experience as a principal, grade level of the school (elementary, middle, high), and whether the principal has one or more assistant principals. The survey consisted of twenty questions using a Likert scale for responses. The data collected from this survey were analyzed for descriptive statistics, variance, standard deviation, and correlation values. In the qualitative component of the research, an interview was conducted with a focus group of principals. The interview consisted of open-ended questions that were derived from the statistical analysis of the quantitative survey. The responses were recorded and hand-coded to identify themes, patterns, and discrepancies. The intended significance of this study included providing results to principals, and the educational community at large, on the allocation of time and energy across five dimensions of school leadership. The goal is for principals to use this information to reflect on their own practices to ensure all the needs of the school building are met. Throughout the qualitative portion of this study, the goal was to explain why principals of different levels, years of experience, gender, and administrative support report on the dimensions as they do. The benefit of this portion of the study may include the identification of the traits of successful building leaders. If successful, this study may provide a sort of “roadmap” to success for school principals

    Fragment Approach to Constrained Density Functional Theory Calculations using Daubechies Wavelets

    Full text link
    In a recent paper we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions is optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix of the system can be projected. In this paper we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e. without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments

    The time as an emergent property of quantum mechanics, a synthetic description of a first experimental approach

    Get PDF
    The "problem of time" in present physics substantially consists in the fact that a straightforward quantization of the general relativistic evolution equation and constraints generates for the Universe wave function the Wheeler-De Witt equation, which describes a static Universe. Page and Wootters considered the fact that there exist states of a system composed by entangled subsystems that are stationary, but one can interpret the component subsystems as evolving: this leads them to suppose that the global state of the universe can be envisaged as one of this static entangled state, whereas the state of the subsystems can evolve. Here we synthetically present an experiment, based on PDC polarization entangled photons, that allows showing with a practical example a situation where this idea works, i.e. a subsystem of an entangled state works as a "clock" of another subsystem
    corecore