15 research outputs found

    Levels of vibration transmitted to the operator of the tractor equipped with front axle suspension

    Get PDF
    In recent years the comfort and the preservation of the health of the operators became central issues in the evolution of agricultural machinery and led to the introduction of devices aimed at improving working conditions. Thereby, for instance, the presence of air conditioner, soundproof cab and driver seat suspension became normal on agricultural tractors. The vibrations are one of the most complex issues to deal with, being determined by the characteristics and interaction of elements such as tyres, axles, mainframe, cab and seat suspension. In this respect, manufacturers are trying to improve their products, even integrating these elements with new devices such as the suspension on the front axle of the tractor, aimed at reducing the level of vibrations during the transfers at high speed. One of these underwent tests at CRA-ING. Since its purpose is to reduce the level of vibration transmitted to the driver, their measurements in different points of the tractor and in different operating conditions, were compared in order to evaluate the effectiveness of the device, expressed as time of exposure. The suspension system of the front axle is designed to absorb the oscillations (especially pitching) determined by irregularities in the road surface, allowing an increased control of the vehicle at high speed, as demonstrated by the test results and confirmed by the driving impressions outlined by the operator. The action of the device under these conditions results in an increase of the exposure time, important fact because of the relevance of the road transfer operations of tractors with mounted implements or trailers to tow and of the tendency to increase the speed limit for the road tractors (in Germany were brought to 50 km h–1 for several years). The action just described is less evident with increasing irregularity of the road surface and with the decrease of the travel speed. Nevertheless, in such conditions, the device appears to positively work along the other directions, in particular in the Z-axis, improving the action of the suspension of the driver seat

    First investigation on the applicability of an active noise control system on a tracked tractor without cab

    Get PDF
    In last years, several research teams pointed their attention on the application of active noise control systems (ANC) inside the cabs of agricultural tractor, with the purpose of reducing the driver exposition to noise, that is only partially controlled by the frame of the cab. This paper reports the results of a first experience that aimed at verifying the applicability of an ANC on a medium-high power, tracked tractor without cab. The tested tractor was a Fiat Allis 150 A, equipped with rear power take off, used in the execution of deep primary tillage in compact soils. It is a tracked tractor without cab, with maximum power of 108.8 kW at 1840 min–1 of the engine. The ANC consists of a control unit box based on a digital signal processor (DPS), two microphones, two speakers and a power amplifier. The instrumentation used in noise data collecting and processing consisted of a multichannel signal analyzer (Sinus - Soundbook), a ½” microphone capsule and an acoustic calibrator, both Bruel & Kjaer. The study aimed at evaluating the behaviour of the ANC by means of tests carried out under repeatable conditions, characterized by pre-defined engine speed values. Three replications have been made for each engine speed. The sampling time was 30 s. Two series of tests were performed in order to compare the results observed with the ANC on and off. The engine speed adopted in the study ranged from 600 min– 1, up to 2000 min–1 (maximum speed) with steps of 100 min–1. The ANC proved to be effective in the interval of speed between 1400 and 1700 min–1, where the samplings have been intensified, adopting steps of 50 min–1. In such an interval, the attenuation observed with the ANC system on appeared evident both as weighed A sound pressure level (from 1.29 up to 2.46 dB(A)) and linear (from 4.54 up to 8.53 dB). The best performance has been observed at the engine speed of 1550 min–1, with attenuations, respectively of 2.46 dB(A) and 7.67 dB. Outside of the engine speed interval 1400 - 1700 min–1, the attenuations always resulted lower than 1 dB(A) for the weighed A sound pressure level and between 0.66 and 7.72 dB

    Prospettive e potenzialitĂ  della digitalizzazione del settore forestale in Italia

    Get PDF
    Information and Communication Technologies (ICT) play a key role for improving the implementation of sustainable forest management at local, regional, and global level. The ICT potential to easily exploit a wider and more up-to-date set of information on the economic, environmental, and so- cial value of forests is of relevant help for the daily work of technicians, land owners, and companies in boosting the efficiency and effectiveness of forest management. The concept of “Precision Forestry” (PF) was developed from the early 2000s, as a branch of precision farming or precision agriculture. PF includes the use of ICT, remote and proximal sensing technologies, and other devices to coordinate and control several processes on a spatial scale (“Precision”) for monitoring, planning, and managing forest resources (“Forestry”). The aim of this monography is to collect and describe some of the most important PF experiences applied or potential- ly useful for the Italian forestry sector. It may represent a reference guide for the stakeholders, such as forest owners, professional technicians, public administrators, and policy makers. The book includes eleven chapters reviewing the main tech- nological tools available in the Italian context and the most recent advances of ICT in forestry, also focusing on the strengths and weaknesses of their practical implementation. The opportunities and challenges of implementing PF meth- ods, practices and technologies are also discussed. In the first two chapters the precision forestry concept and its historical development are introduced. In the third chap- ter some basic elements of ICT, GIS, Global Navigation Satellite Systems (GNSS), remote/proximal sensing, and related technologies which are essential for a better compre- hension of PF applications are recalled. In chapter 4 recent advances in large scale forest inventories with a focus on mapping and on the spatial estimation of forest variables integrating field surveys and multisource re- motely sensed data are described. Current advancements in the acquisition of field information including Terrestrial La- ser Scanning (TLS), new digital dendrometers, tree-talkers, terrestrial cameras, and APP for portable devices such as smartphones or tablets for dendrometric tree measures and new citizen science applications to support quantitative and qualitative spatial estimation of forest variables over large areas (i.e., forest health, fuel types) are also presented. The chapter ends up with the description of some experiences in the implementation of Forest Information Systems in Italy to provide a simple open-access to such new generation of spatial forest information. In chapter 5 PF tools, instruments, and technologies to sup- port sustainable forest management are illustrated. APPs developed to acquire field plots data to simulate manage- ment operations, the application of photogrammetric tech- nologies from Unmanned Aerial Vehicles and TLS data for monitoring with high-spatial scale forest monitoring and for acquiring indicators at single tree level are presented. A de- tailed description of new user-friendly tools for forest roadplanning, design and construction, as well as forest opera- tion planning is also included. Precision forest tree farming (with particular reference to poplar cultivation), useful to promote and increase the prof- itability and sustainability of forest plantations within the Italian context is described in chapter 6. The innovation and enhancement within the supply chain of wood plantations (from planting to harvesting, including monitoring and identification of stress) by soil proximal sensing techniques, Early Warning Systems, and specific software are highlight- ed. Considering the even higher market demands, promoted by the large-scale planting programs for climate changes mit- igation and the demands for propagation material for en- vironmental recovery, innovative techniques and methods supported by ICT in the forest nursery sector are described in chapter 7. In chapter 8 available technologies related to precision har- vesting are analyzed and described taking into consideration the wood chain efficiency, by means of improved commu- nications between the owner/buyer and operators as well as among machineries used in forest operations, health and safety of forest operators, environmental impacts mitigation and recovery, and operators training. Advanced communi- cation systems and sensors for the exchange of data and information between machines, machine-equipments and/or machine-operators, teleoperations and automation are also described. Chapters 9 and 10 are related to wood products traceabil- ity, timber quality assessment as well as the technologies for the optimization of wood transformation processes. The concepts of wood product traceability and tracing, togeth- er with latest digital technologies for the identification and tracking of the logs (i.e., fingerprinting and RFID), are de- tailly reported. Chapter 11 is finally dedicated to the relationship between the EU policy framework and the digitalization process in both agricultural and forestry sectors. The book summarizes, under a proactive and homogeneous framework, PF methods, tools and technologies in relation with the digital transition of the Italian forestry sectors. The authors hope this book will be useful for improving the implementation of sustainable forest management practic- es at all levels in Italy, providing a comprehensive review useful for policy makers, technicians, forestry owners and students
    corecore