37 research outputs found

    On the Observability of Giant Protoplanets in Circumstellar Disks

    Full text link
    We investigate the possibility to detect giant planets that are still embedded in young circumstellar disks. Based on models with different stellar, planetary, and disk masses, and different radial positions of the planet we analyze the resulting submillimeter appearance of these systems. We find that the influence of the planet on the spectral energy distribution could not be distinguished from that of other disk parameters. However, dust reemission images of the disks show that the hot region in the proximity of a young planet, along with the gap, could indeed be detected and mapped with the Atacama Large Millimeter Array in the case of nearby circumstellar disks (d<100pc) in approximate face-on orientation.Comment: ApJ, in pres

    Review on friction and wear test rigs: An overview on the state of the art in tyre tread friction evaluation

    Get PDF
    The future evolution of autonomous mobility and road transportation will require substantial improvements in tyre adherence optimization. As new technologies being deployed in tyre manufacturing reduce total vehicle energy consumption, the contribution of tyre friction for safety and performance enhancement continues to increase. For this reason, the tyre’s grip is starting to drive the focus of many tyre developments nowadays. This is because the tread compound attitude to maximize the interaction forces with the ground is the result of a mix of effects, involving polymer viscoelastic characteristics, road roughness profiles and the conditions under which each tyre works during its lifespan. In such a context, mainly concerning the automotive market, the testing, analysis and objectivation of the friction arising at the tread interface is performed by means of specific test benches called friction testers. This paper reviews the state of the art in such devices’ development and use, with a global overview of the measurement methodologies and with a classification based on the working and specimen motion principle. Most tyre friction testers allow one to manage the relative sliding speed and the contact pressure between the specimen and the counter-surface, while just some of them are able to let the user vary the testing temperature. Few devices can really take into account the road real roughness, carrying out outdoor measurements, useful because they involve actual contact phenomena, but very complex to control outside the laboratory environment

    Evolution of Migrating Planets Undergoing Gas Accretion

    Full text link
    We analyze the orbital and mass evolution of planets that undergo run-away gas accretion by means of 2D and 3D hydrodynamic simulations. The disk torque distribution per unit disk mass as a function of radius provides an important diagnostic for the nature of the disk-planet interactions. We first consider torque distributions for nonmigrating planets of fixed mass and show that there is general agreement with the expectations of resonance theory. We then present results of simulations for mass-gaining, migrating planets. For planets with an initial mass of 5 Earth masses, which are embedded in disks with standard parameters and which undergo run-away gas accretion to one Jupiter mass (Mjup), the torque distributions per unit disk mass are largely unaffected by migration and accretion for a given planet mass. The migration rates for these planets are in agreement with the predictions of the standard theory for planet migration (Type I and Type II migration). The planet mass growth occurs through gas capture within the planet's Bondi radius at lower planet masses, the Hill radius at intermediate planet masses, and through reduced accretion at higher planet masses due to gap formation. During run-away mass growth, a planet migrates inwards by only about 20% in radius before achieving a mass of ~1 Mjup. For the above models, we find no evidence of fast migration driven by coorbital torques, known as Type III migration. We do find evidence of Type III migration for a fixed mass planet of Saturn's mass that is immersed in a cold and massive disk. In this case the planet migration is assumed to begin before gap formation completes. The migration is understood through a model in which the torque is due to an asymmetry in density between trapped gas on the leading side of the planet and ambient gas on the trailing side of the planet.Comment: 26 pages, 29 figures. To appear in The Astrophysical Journal vol.684 (September 20, 2008 issue

    Ciaramella: A Synchronous Data Flow Programming Language For Audio DSP

    Get PDF
    Various programming languages have been developed specifically for audio DSP in the last decades, yet only a handful of industrial and commercial applications are known to actually use them. We assume that this is due to some common deficiencies of such languages, namely the tight coupling between syntax and computational model, which limits modularity, and the adoption of programming paradigms that are conceptually distant from conventional DSP formalism. We propose a new audio DSP programming language, called Ciaramella, based on the synchronous data flow (SDF) computational model and featuring a fully declarative syntax to address these issues. A source-to-source compiler which translates Ciaramella code to C++ and MATLAB programs has been developed. We have checked that our solution allows to naturally represent and correctly schedule highly-interdependent DSP systems such as Wave Digital Filters (WDFs) which would be hard to handle in current audio DSP languages

    Orbital Migration and Mass Accretion of Protoplanets in 3D Global Computations with Nested Grids

    Full text link
    We investigate the evolution of protoplanets with different masses embedded in an accretion disk, via global fully three-dimensional hydrodynamical simulations. We consider a range of planetary masses extending from one and a half Earth's masses up to one Jupiter's mass, and we take into account physically realistic gravitational potentials of forming planets. In order to calculate accurately the gravitational torques exerted by disk material and to investigate the accretion process onto the planet, the flow dynamics has to be thoroughly resolved on long as well as short length scales. We achieve this strict resolution requirement by applying a nested-grid refinement technique which allows to greatly enhance the local resolution. Our results from altogether 51 simulations show that for large planetary masses, approximately above a tenth of the Jupiter's mass, migration rates are relatively constant, as expected in type II migration regime and in good agreement with previous two-dimensional calculations. In a range between seven and fifteen Earth's masses, we find a dependency of the migration speed on the planetary mass that yields time scales considerably longer than those predicted by linear analytical theories. This property may be important in determining the overall orbital evolution of protoplanets. The growth time scale is minimum around twenty Earth-masses, but it rapidly increases for both smaller and larger mass values. Significant differences between two- and three-dimensional calculations are found in particular for objects with masses smaller than ten Earth-masses. We also derive an analytical approximation for the numerically computed mass growth rates.Comment: 28 pages, 12 figures. To appear in The Astrophysical Journal vol.586 (March 20, 2003 issue

    Evolution of Giant Planets in Eccentric Disks

    Get PDF
    We investigate the interaction between a giant planet and a viscous circumstellar disk by means of high-resolution, two-dimensional hydrodynamical simulations. We consider planet masses that range from 1 to 3 Jupiter masses (Mjup) and initial orbital eccentricities that range from 0 to 0.4. We find that a planet can cause eccentricity growth in a disk region adjacent to the planet's orbit, even if the planet's orbit is circular. Disk-planet interactions lead to growth in a planet's orbital eccentricity. The orbital eccentricities of a 2 Mjup and a 3 Mjup planet increase from 0 to 0.11 within about 3000 orbits. Over a similar time period, the orbital eccentricity of a 1 Mjup planet grows from 0 to 0.02. For a case of a 1 Mjup planet with an initial eccentricity of 0.01, the orbital eccentricity grows to 0.09 over 4000 orbits. Radial migration is directed inwards, but slows considerably as a planet's orbit becomes eccentric. If a planet's orbital eccentricity becomes sufficiently large, e > ~0.2, migration can reverse and so be directed outwards. The accretion rate towards a planet depends on both the disk and the planet orbital eccentricity and is pulsed over the orbital period. Planet mass growth rates increase with planet orbital eccentricity. For e~0.2 the mass growth rate of a planet increases by approximately 30% above the value for e=0. For e > ~0.1, most of the accretion within the planet's Roche lobe occurs when the planet is near the apocenter. Similar accretion modulation occurs for flow at the inner disk boundary which represents accretion toward the star.Comment: 20 pages 16 figures, 3 tables. To appear in The Astrophysical Journal vol.652 (December 1, 2006 issue

    New Formation Models for the Kepler-36 System

    Get PDF
    Formation of the planets in the Kepler-36 system is modeled by detailed numerical simulations according to the core-nucleated accretion scenario. The standard model is updated to include the dissolution of accreting rocky planetesimals in the gaseous envelope of the planet, leading to substantial enrichment of the envelope mass in heavy elements and a non-uniform composition with depth. For Kepler-36 c, models involving in situ formation and models involving orbital migration are considered. The results are compared with standard formation models. The calculations include the formation (accretion) phase as well as the subsequent cooling phase, up to the age of Kepler-36 (7 Gyr). During the latter phase, mass loss induced by stellar XUV radiation is included. In all cases, the results fit the measured mass, 7.84 M⊕, and radius, 3.68 R⊕, of Kepler-36 c. Two parameters are varied to obtain these fits: the disk solid surface density at the formation location and the "efficiency" factor in the XUV mass-loss rate. The updated models are hotter and therefore less dense in the silicate portion of the planet and in the overlying layers of H/He, as compared with standard models. The lower densities mean that only about half as much H/He is needed to be accreted to fit the present-day mass and radius constraints. For Kepler-36 b, an updated in situ calculation shows that the entire H/He envelope is lost, early in the cooling phase, in agreement with observation
    corecore